RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2018; 29(12): 1659-1663
DOI: 10.1055/s-0036-1591586
DOI: 10.1055/s-0036-1591586
letter
Copper-Catalyzed Cross-Dehydrogenative-Coupling Reaction of N-Arylglycine Esters with Imides or Amides for Synthesis of α-Substituted α-Amino Acid Esters
Financial supports from the National Natural Science Foundation of China (21602027, 21462001 and 11765003), the Natural Science Foundation of Jiangxi Province (20171BAB213006), the China Postdoctoral Science Foundation (2018M632595) the Foundation of Jiangxi Educational Committee (GJJ170430), and the Scientific Research Foundation of East China University of Technology (DHBK2016112) are gratefully acknowledged.Weitere Informationen
Publikationsverlauf
Received: 09. März 2018
Accepted after revision: 22. April 2018
Publikationsdatum:
05. Juni 2018 (online)
Abstract
A simple and highly efficient cross-dehydrogenative-coupling (CDC) reaction between N-aryl glycine esters and imides or amides by the catalysis of a copper salt without the requirement of peroxide agents is described. The novel reaction provides a facile approach for the synthesis of α-substituted α-amino acid esters through C–H/N–H oxidative cross-coupling. A possible mechanism for the CDC reaction by using copper as a catalyst and air as the terminal oxidant is also proposed. This synthetic approach has the advantages of good yields, simple operation and mild reaction conditions.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591586.
- Supporting Information
-
References and Notes
- 1a Ricci A. Amino Group Chemistry: From Synthesis to the Life Sciences. Wiley-VCH; Weinheim: 2008
- 1b Shirota Y. Kageyama H. Chem. Rev. 2007; 107: 953
- 1c Hili R. Yudin AK. Nat. Chem. Biol. 2006; 2: 284
- 2a Cho SH. Kim JY. Kwak J. Chang S. Chem. Soc. Rev. 2011; 40: 5068
- 2b Bariwal J. Van der Eycken E. Chem. Soc. Rev. 2013; 42: 9283
- 2c Louillat M.-L. Patureau FW. Chem. Soc. Rev. 2014; 43: 901
- 2d Wan J.-P. Jing Y. Beilstein J. Org. Chem. 2015; 11: 2209
- 2e Kim H. Chang S. ACS Catal. 2016; 6: 2341
- 2f Kozlowski MC. Acc. Chem. Res. 2017; 50: 638
- 2g Rit RK. Shankar M. Sahoo AK. Org. Biomol. Chem. 2017; 15: 1282
- 3a Li C.-J. Acc. Chem. Res. 2009; 42: 335
- 3b Ashenhurst JA. Chem. Soc. Rev. 2010; 39: 540
- 3c Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
- 3d Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3464
- 3e Girard SA. Knauber T. Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
- 3f Liu C. Yuan J. Gao M. Tang S. Li W. Shi R. Lei A. Chem. Rev. 2015; 115: 12138
- 4a Zhao L. Li C.-J. Angew. Chem. Int. Ed. 2008; 47: 7075
- 4b Xie J. Huang Z.-Z. Angew. Chem. Int. Ed. 2010; 49: 10181
- 4c Zhang G. Zhang Y. Wang R. Angew. Chem. Int. Ed. 2011; 50: 10429
- 4d Gao X.-W. Meng Q.-Y. Xiang M. Chen B. Feng K. Tung C.-H. Wu L.-Z. Adv. Synth. Catal. 2013; 355: 2158
- 4e Wei W.-T. Song R.-J. Li J.-H. Adv. Synth. Catal. 2014; 356: 1703
- 4f Huo C. Yuan Y. Wu M. Jia X. Wang X. Chen F. Tang J. Angew. Chem. Int. Ed. 2014; 53: 13544
- 4g Zhu Z.-Q. Bai P. Huang Z.-Z. Org. Lett. 2014; 16: 4881
- 4h Gao X.-W. Meng Q.-Y. Li J.-X. Zhong J.-J. Lei T. Li X.-B. Tung C.-H. Wu L.-Z. ACS Catal. 2015; 5: 2391
- 4i Zhu Z.-Q. Xie Z.-B. Le Z.-G. J. Org. Chem. 2016; 81: 9449
- 4j Zhu Z.-Q. Xie Z.-B. Le Z.-G. Synlett 2017; 28: 485
- 4k Zhu Z.-Q. Xiao L.-J. Chen Y. Xie Z.-B. Zhu H.-B. Le Z.-G. Synthesis 2018;
- 5a Zhao L. Basle O. Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2009; 11: 4106
- 5b Zhu SQ. Rueping M. Chem. Commun. 2012; 48: 11960
- 5c Li K. Tan G. Huang J. Song F. You J. Angew. Chem. Int. Ed. 2013; 52: 12942
- 5d Huo C. Wang C. Wu M. Jia X. Xie H. Yuan Y. Adv. Synth. Catal. 2014; 356: 411
- 5e Li K. Wu Q. Lan J. You J. Nat. Commun. 2015; 6: 8404
- 5f Salman M. Zhu Z.-Q. Huang Z.-Z. Org. Lett. 2016; 18: 1526
- 5g Xie Z. Jia J. Liu X. Liu L. Adv. Synth. Catal. 2016; 358: 919
- 5h Xie Z. Liu X. Liu L. Org. Lett. 2016; 18: 2982
- 5i Jiao J. Zhang J.-R. Liao Y.-Y. Xu L. Hu M. Tang R.-Y. RSC Adv. 2017; 7: 30152
- 6a Yang B. Yang T.-T. Li A.-X. Wang J.-J. Yang S.-D. Org. Lett. 2013; 15: 5024
- 6b During the preparation of our manuscript, a copper-catalyzed amidation/imidation of N-arylglycine ester derivatives via C–N coupling was reported by: Ramana VD. Chandrasekharam M. Org. Chem. Front. 2018; 5: 788
- 7a Barrett GE. Elmore DT. Amino Acids and Peptides . Cambridge University; Cambridge: 1998
- 7b Maruoka K. Ooi T. Chem. Rev. 2003; 103: 3013
- 7c Baktharaman S. Hili R. Yudin AK. Aldrichimica Acta 2008; 41: 109
- 8a Rolff M. Schottenheim J. Decker H. Tuczek F. Chem. Soc. Rev. 2011; 40: 4077
- 8b Cramer CJ. Tolman WB. Acc. Chem. Res. 2007; 40: 601
- 9 General Procedure for the Synthesis of α-Substituted α-Amino Acid Esters 3: To a solution of N-arylglycine esters 1 (0.3 mmol) in MeCN (2 mL) were added imides or amides 2 (0.2 mmol) and CuCl (2.0 mg, 0.02 mmol). Then, the reaction mixture was stirred at 60 °C under air atmosphere until the reaction was completed. Then, the resulting mixture was concentrated under vacuum, and the residue was purified by column chromatography (silica gel, petroleum ether/EtOAc as an eluent) to afford the corresponding products 3.
- 10 Analytical Data of Ethyl 2-(1,3-Dioxoisoindolin-2-yl)-2-(p-tolylamino)acetate (3aa): light yellow solid; yield: 65.6 mg (97%); mp 119.2–119.7 °C. 1H NMR (400 MHz, CDCl3): δ = 7.82–7.84 (m, 2 H), 7.70–7.72 (m, 2 H), 6.99 (d, J = 8.0 Hz, 2 H), 6.74 (d, J = 8.4 Hz, 2 H), 6.19 (d, J = 9.6 Hz, 1 H), 5.20 (d, J = 9.2 Hz, 1 H), 4.30 (q, J = 7.2 Hz, 2 H), 2.20 (s, 3 H), 1.25 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 167.5, 167.2, 141.6, 134.4, 131.7, 130.0, 128.9, 123.7, 114.0, 63.0, 60.4, 20.4, 14.1. HRMS (ESI): m/z [M + H+] calcd for C19H19N2O4: 339.1339; found: 339.1352.
For a book and reviews, see:
For reviews, see:
For selected reviews on CDC reactions, see:
For a book and reviews, see:
For reviews, see: