Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(19): 2572-2576
DOI: 10.1055/s-0037-1609949
DOI: 10.1055/s-0037-1609949
cluster
Electron Acceptors Based on Cyclopentannulated Tetracenes
We are grateful to the National Science Foundation (NSF CAREER CHE-#1352431) for financial support. J.L.M.-C. was supported by NSF REU grant DMR-#1757954Further Information
Publication History
Received: 01 August 2018
Accepted after revision: 19 August 2018
Publication Date:
11 September 2018 (online)
Published as part of the Cluster Synthesis of Materials
Abstract
New cyclopenta-fused polycyclic aromatic hydrocarbons (CP-PAHs) based on tetracene have been prepared by a palladium-catalyzed cyclopentannulation reaction. The new compounds have low-energy lowest unoccupied molecular orbitals (LUMOs) and relatively small band gaps. The photooxidative stability was intermediate to previously prepared CP-PAHs based on anthracene and pentacene as found in traditional acene stabilities. Scholl cyclodehydrogenation of pendant aryl groups led to materials that quickly formed endoperoxide products.
Key words
cyclopenta-fused polycyclic aromatic hydrocarbons - electron acceptors - acenes - palladium-catalyzed annulationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609949.
- Supporting Information
-
References and Notes
- 1 Rudebusch GE. Haley MM. Planar Cyclopenta-Fused Polycyclic Arenes . In Polycyclic Arenes and Heteroarenes . Miao Q. Wiley-VCH Verlag GmbH & Co; Weinheim: 2015
- 2 Sangaiah R. Gold A. J. Org. Chem. 1987; 52: 3205
- 3 Dang H. Garcia-Garibay MA. J. Am. Chem. Soc. 2001; 123: 355
- 4 Dang H. Levitus M. Garcia-Garibay MA. J. Am. Chem. Soc. 2002; 124: 136
- 5 Eversloh LE. Avlasevich Y. Li C. Müllen K. Chem. Eur. J. 2011; 17: 12756
- 6 Mohebbi AR. Wudl F. Chem. Eur. J. 2011; 17: 2642
- 7 Mohebbi AR. Yuen J. Fan J. Munoz C. Wang Mf. Shirazi RS. Seifter J. Wudl F. Adv. Mater. 2011; 23: 4644
- 8 Chaolumen; Murata M. Sugano Y. Wakamiya A. Murata Y. Angew. Chem. Int. Ed. 2015; 54: 9308
- 9 Chaolumen; Murata M. Wakamiya A. Murata Y. Org. Lett. 2017; 19: 826
- 10 Xia H. Liu D. Xu X. Miao Q. Chem. Commun. 2013; 4301
- 11 Wegner HA. Scott LT. de Meijere A. J. Org. Chem. 2003; 68: 883
- 12 Lakshminarayana AN. Chang J. Luo J. Zheng B. Huang K.-W. Chi C. Chem. Commun. 2015; 3604
- 13 Wombacher T. Gassmann A. Foro S. von Seggern H. Schneider JJ. Angew. Chem. Int. Ed. 2016; 55: 6041
- 14 Wombacher T. Foro S. Schneider JJ. Eur. J. Org. Chem. 2016; 569
- 15 Bheemireddy SR. Ubaldo PC. Rose PW. Finke AD. Zhuang J. Wang L. Plunkett KN. Angew. Chem. Int. Ed. 2015; 54: 15762
- 16 Bheemireddy SR. Ubaldo PC. Finke AD. Wang L. Plunkett KN. J. Mater. Chem. C 2016; 4: 3963
- 17 Wood JD. Jellison JL. Finke AD. Wang L. Plunkett KN. J. Am. Chem. Soc. 2012; 134: 15783
- 18 Plunkett KN. Synlett 2013; 24: 898
- 19 Chaolumen; Murata M. Wakamiya A. Murata Y. Angew. Chem. Int. Ed. 2017; 56: 5082
- 20 Clar E. The Aromatic Sextet . Wiley; New York, NY: 1972
- 21 Solà M. Front. Chem. 2013; 1, 1-22
- 22 Foote CS. Acc. Chem. Res. 1968; 1: 104
- 23 Fudickar W. Linker T. J. Am. Chem. Soc. 2012; 134: 15071
- 24 Wadsworth A. Moser M. Marks A. Little MS. Gasparini N. Brabec CJ. Baran D. McCulloch I. Chem. Soc. Rev. 2018;
- 25 Zade SS. Bendikov M. J. Phys. Org. Chem. 2012; 25: 452
- 26 1,2,7,8-Tetrakis(3-(dodecyloxy)phenyl)dicyclopenta[de,mn]tetracene (6): In a glove box, 4 (0.127 g, 0.328 mmol), 5 (0.430 g, 0.786 mmol), Pd2(dba)3 (30.0 mg, 0.0328 mmol), P(o-Tol)3 (15.1 mg, 0.0495 mmol), KOAc (0.161 g, 1.64 mmol), LiCl (27.8 mg, 0.657 mmol) and DMF (7.67 mL) were combined in a sealed tube and stirred overnight at 130 °C. The reaction mixture was cooled to room temperature and poured dropwise into methanol (50 mL) and filtered. The solid was washed with methanol and acetone to give 5 (0.164 g, 25.0%) as a green solid. 1H NMR (500 MHz, CD2Cl2): δ = 8.62 (s, 2 H), 7.87 (d, J = 6.5 Hz, 2 H), 7.73 (d, J = 8.5 Hz, 2 H), 7.57 (dd, J = 8.4, 6.6 Hz, 2 H), 7.50 (t, J = 7.7 Hz, 2 H), 7.29 (t, J = 7.9 Hz, 2 H), 7.24 (d, J = 7.4 Hz, 2 H), 7.16 (s, 2 H), 7.13–7.09 (m, 4 H), 6.98 (s, 2 H), 6.84 (dd, J = 8.1, 2.1 Hz, 2 H), 4.00 (t, J = 6.6 Hz, 4 H), 3.83 (t, J = 6.6 Hz, 4 H), 1.80–1.71 (m, 8 H), 1.48–1.19 (m, 72 H), 0.91 (q, J = 7.0 Hz, 12 H). 13C NMR (126 MHz, CD2Cl2): δ = 159.38, 158.92, 141.12, 139.74, 139.39, 136.67, 136.33, 136.08, 131.06, 129.60, 129.00, 128.89, 127.69, 126.93, 126.68, 125.64, 124.20, 122.93, 122.43, 116.58, 115.65, 114.27, 113.69, 68.15, 67.93, 31.93, 31.91, 29.71, 29.65, 29.60, 29.41, 29.38, 29.35, 29.22, 29.16, 26.01, 22.70, 22.68, 13.88. HRMS: m/z calcd for C94H124O4: 1316.9500; found: 1316.9111. 4,4′,4′′,4′′′-(Dicyclopenta[de,mn]tetracene-1,2,7,8-tetrayl)tetrakis(2-methylthiophene) (8): In a glove box, 4 (41.3 mg, 0.107 mmol), 7 (56.0 mg, 0.257 mmol), Pd2(dba)3 (9.80 mg, 0.0107 mmol), P(o-Tol)3 (4.92 mg, 0.0162 mmol), KOAc (52.6 mg, 0.536 mmol), LiCl (9.12 mg, 0.215 mmol) and DMF (10.7 mL) were combined in a sealed tube and stirred overnight at 130 °C. The reaction mixture was cooled to room temperature and poured dropwise into methanol (50 mL) and filtered. The solid was washed with methanol and acetone to give 7 (20.2 mg, 28.3%) as a green solid. 1H NMR (500 MHz, CD2Cl2): δ = 8.47 (s, 2 H), 7.84 (d, J = 6.5 Hz, 2 H), 7.67 (d, J = 8.5 Hz, 2 H), 7.47 (dd, J = 8.4, 6.6 Hz, 2 H), 7.10 (d, J = 1.1 Hz, 2 H), 7.04 (d, J = 1.1 Hz, 2 H), 6.91 (s, 2 H), 6.76 (s, 2 H), 2.59 (s, 6 H), 2.40 (s, 6 H). 13C NMR (126 MHz, CD2Cl2): δ = 140.67, 139.63, 139.20, 137.89, 136.50, 135.69, 135.64, 132.68, 130.89, 128.97, 128.03, 127.55, 126.92, 126.90, 126.34, 125.12, 124.11, 122.34, 121.46, 15.27, 15.09. HRMS: m/z calcd for C42H28S4: 660.1074; found: 659.926.
- 27 Bheemireddy SR. Hautzinger MP. Li T. Lee B. Plunkett KN. J. Am. Chem. Soc. 2017; 139: 5801
- 28 Unpublished results.