Subscribe to RSS
DOI: 10.1055/s-0037-1610125
Deciphering the Redox Chain Mechanism in the Catalytic Alkylation of Quinones
This work was supported by the National Natural Science Foundation of China (Grant No. 21673141), “1000 Talents Plan for Young Professionals” start-up funding, and ShanghaiTech University start-up funding.Publication History
Received: 20 March 2018
Accepted: 03 April 2018
Publication Date:
14 May 2018 (online)
Dedicated to Prof. Hisashi Yamamoto on the occasion of his 75th birthday.
Abstract
Alkylation of p-quinones with allylic and benzylic esters is achieved by using a strong Lewis acid as the catalyst. This transformation likely follows an unusual redox chain mechanism. In this mechanism, quinone undergoes a sequence of reactions: it is reduced to hydroquinone (HQ), functionalized in a Lewis acid-catalyzed Friedel–Crafts alkylation, and then oxidized back to quinone. The last step is concurrent with the first step of a second quinone molecule, which is reduced to new HQ and functionalized, and thus propagates the redox chain reaction. The autoinitiation mechanism of the redox chain is not well understood, but additive HQ or Hantzsch ester can serve as effective initiators. The likelihood of this mechanism was elaborated by kinetic studies and various control experiments.
1 Introduction
2 Discovery of Catalytic Alkylation Reactions of Quinones
3 Proposed Redox Chain Reaction Mechanism and Experimental Evidence
4 Substrate Scope
5 Conclusion
-
References
- 1a Ernster L. Dallner G. Biochim. Biophys. Acta 1995; 1271: 195
- 1b Ferreira IC. Vaz JA. Vasconcelos MH. Martins A. Anticancer Agents Med. Chem. 2010; 10: 424
- 1c Sunassee SN. Davies-Coleman MT. Nat. Prod. Rep. 2012; 29: 513
- 2a Naruta Y. J. Org. Chem. 1980; 45: 4097
- 2b Zhang H.-B. Liu L. Chen Y.-J. Wang D. Li C.-J. Adv. Synth. Catal. 2006; 348: 229
- 3 Iovel I. Mertins K. Kischel J. Zapf A. Beller M. Angew. Chem. Int. Ed. 2005; 44: 3913
- 4a Eren D. Keinan E. J. Am. Chem. Soc. 1988; 110: 4356
- 4b Boers RB. Pazos Randulfe Y. van der Haas HN. S. van Rossum-Baan M. Lugtenburg J. Eur. J. Org. Chem. 2002; 2094
- 4c Min J.-H. Lee J.-S. Yang J.-D. Koo S. J. Org. Chem. 2003; 68: 7925
- 4d Yu X.-J. Chen F.-E. Dai H.-F. Chen X.-X. Kuang Y.-Y. Xie B. Helv. Chim. Acta 2005; 88: 2575
- 4e Dai H.-F. Chen F.-E. Yu X.-J. Helv. Chim. Acta 2006; 89: 1317
- 5 Lipshutz BH. Lower A. Berl V. Schein K. Wetterich F. Org. Lett. 2005; 7: 4095
- 6 Gan X. Jiang W. Wang W. Hu L. Org. Lett. 2009; 11: 589
- 7a Fujiwara Y. Domingo V. Seiple IB. Gianatassio R. Del Bel M. Baran PS. J. Am. Chem. Soc. 2011; 133: 3292
- 7b Walker SE. Jordan-Hore JA. Johnson DG. Macgregor SA. Lee A.-L. Angew. Chem. Int. Ed. 2014; 53: 13876
- 7c Wang J. Wang S. Wang G. Zhang J. Yu X.-Q. Chem. Commun. 2012; 48: 11769
- 7d Ilangovan A. Saravanakumar S. Malayappasamy S. Org. Lett. 2013; 15: 4968
- 8 Xu X.-L. Li Z. Angew. Chem. Int. Ed. 2017; 56: 8196
- 9 Han X. Wu J. Angew. Chem. Int. Ed. 2013; 52: 4637
- 10a Liu C. Liao S. Li Q. Feng S. Sun Q. Yu X. Xu Q. J. Org. Chem. 2011; 76: 5759
- 10b Xu Q. Li Q. Zhu X. Chen J. Adv. Synth. Catal. 2013; 355: 73
- 10c Xu Q. Chen J. Tian H. Yuan X. Li S. Zhou C. Liu J. Angew. Chem. Int. Ed. 2014; 53: 225
- 11 Lohr TL. Li Z. Assary RS. Curtiss LA. Marks TJ. ACS Catal. 2015; 5: 3675
- 12 Hashimoto I. Kawasaki A. Ogata Y. Tetrahedron 1972; 28: 217
- 13 Brunmark A. Cadenas E. Free Radic. Biol. Med. 1989; 7: 435
- 14 For comparison of Lewis acids and conditions screening, please see ref 8.
- 15 Naumann S. Unold J. Frey W. Buchmeiser MR. Macromolecules 2011; 44: 8380
- 16 Martin-Luengo MA. Yates M. Rojo ES. Huerta Arribas D. Aguilar D. Ruiz Hitzky E. Appl. Catal., A 2010; 387: 141
- 17 Shiraishi M. Kato K. Terao S. Ashida Y. Terashita Z. Kito G. J. Med. Chem. 1989; 32: 2214
- 18 Lücht A. Patalag LJ. Augustin AU. Jones PG. Werz DB. Angew. Chem. Int. Ed. 2017; 56: 10587
- 19 Burns NZ. Baran PS. Hoffmann RW. Angew. Chem. Int. Ed. 2009; 48: 2854