Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(14): 1801-1806
DOI: 10.1055/s-0037-1610141
DOI: 10.1055/s-0037-1610141
synpacts
Recent Advances in Intermolecular Hydroacylation of Alkenes with Aldehydes through Rhodium Catalysis
We are grateful to NSFC-21421091, 21772218 XDB20000000, the ‘Thousand Plan’ Youth Program, the State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, and the Chinese Academy of Sciences.Further Information
Publication History
Received: 10 March 2018
Accepted after revision: 11 April 2018
Publication Date:
23 May 2018 (online)
Abstract
The rhodium-catalyzed intermolecular hydroacylation of alkenes with aldehydes is an atom-economical method for the synthesis of ketones. Here, we give a brief review on its development and we highlight recent advances in chelating strategies for the stabilization of acyl rhodium species by coordinative saturation.
-
References
- 1a Park J.-W. Kou KG. M. Kim DK. Dong VM. Chem. Sci. 2015; 6: 4479
- 1b Willis MC. Chem. Rev. 2010; 110: 725
- 1c Park YJ. Park J.-W. Jun C.-H. Acc. Chem. Res. 2008; 41: 222
- 1d Fu GC. In Modern Rhodium Catalyzed Organic Reactions . Evans PA. Wiley-VCH; New York: 2005. Chap. 4 79 ; and references therein
- 2a Yang L. Huang H. Chem. Rev. 2015; 115: 3468
- 2b Jun C.-H. Jo E.-A. Park J.-W. Eur. J. Org. Chem. 2007; 1869
- 3 Sakai K. Ide J. Oda O. Nakamura N. Tetrahedron Lett. 1972; 13: 1287
- 4a Crépin D. Dawick J. Aïssa C. Angew. Chem. Int. Ed. 2010; 49: 620
- 4b Aïssa C. Fürstner A. J. Am. Chem. Soc. 2007; 129: 14836
- 4c Aloise AD. Layton ME. Shair MD. J. Am. Chem. Soc. 2000; 122: 12610
- 4d Sato Y. Oonishi Y. Mori M. Angew. Chem. Int. Ed. 2002; 41: 1218
- 4e Barnhart RW. Wang X. Noheda P. Bergens SH. Whelan J. Bosnich B. J. Am. Chem. Soc. 1994; 116: 1821
- 4f Wu X.-M. Funakoshi K. Sakai K. Tetrahedron Lett. 1992; 33: 6331
- 4g James BR. Young CG. J. Chem. Soc., Chem. Commun. 1983; 1215
- 4h Lochow CF. Miller RG. J. Am. Chem. Soc. 1976; 98: 1281
- 4i Milstein D. Organometallics 1982; 1: 1549
- 5a Campbell RE. Jr. Lochow CF. Vora KP. Miller RG. J. Am. Chem. Soc. 1980; 102: 5824
- 5b Campbell RE. Jr. Miller RG. J. Organomet. Chem. 1980; 186: c27
- 5c Marder TB. Roe DC. Milstein D. Organometallics 1988; 7: 1451
- 6 Suggs JW. J. Am. Chem. Soc. 1978; 100: 640
- 7a Lee H. Jun C.-H. Bull. Korean Chem. Soc. 1995; 16: 66
- 7b Lee H. Jun C.-H. Bull. Korean Chem. Soc. 1995; 16: 1135
- 8 Suggs JW. J. Am. Chem. Soc. 1979; 101: 489
- 9a Jun C.-H. Lee H. Hong J.-B. J. Org. Chem. 1997; 62: 1200
- 9b Jun C.-H. Lee D.-Y. Lee H. Hong J.-B. Angew. Chem. Int. Ed. 2000; 39: 3070
- 9c Jo E.-A. Jun C.-H. Eur. J. Org. Chem. 2006; 2504
- 9d Jo E.-A. Jun C.-H. Tetrahedron Lett. 2009; 50: 3338
- 10a Jun C.-H. Hong J.-B. Kim Y.-H. Chung K.-Y. Angew. Chem. Int. Ed. 2000; 39: 3440
- 10b Jun C.-H. Moon CW. Lim S.-G. Lee H. Org. Lett. 2002; 4: 1595
- 10c Lee D.-Y. Kim I.-J. Jun C.-H. Angew. Chem. Int. Ed. 2002; 41: 3031
- 11 Vautravers NR. Regent DD. Breit B. Chem. Commun. 2011; 47: 6635
- 12a Kokobu K. Matsumasa K. Miura M. Nomura M. J. Org. Chem. 1997; 62: 4564
- 12b Kokobu K. Matsumasa K. Nishinaka Y. Miura M. Nomura M. Bull. Chem. Soc. Jpn. 1999; 72: 303
- 13a von Delius M. Le CM. Dong VM. J. Am. Chem. Soc. 2012; 134: 15022
- 13b Phan DH. T. Kou KG. M. Dong VM. J. Am. Chem. Soc. 2010; 132: 16354
- 13c Coulter MM. Dornan PK. Dong VM. J. Am. Chem. Soc. 2009; 131: 6932
- 13d Stemmler RT. Bolm C. Adv. Synth. Catal. 2007; 349: 1185
- 13e Tanaka K. Tanaka M. Suemune H. Tetrahedron Lett. 2005; 46: 6053
- 14a Coxon TJ. Fernández M. Barwick-Silk J. McKay AI. Britton LE. Weller AS. Willis MC. J. Am. Chem. Soc. 2017; 139: 10142
- 14b Prades A. Fernández M. Pike SD. Willis MC. Weller AS. Angew. Chem. Int. Ed. 2015; 54: 8520
- 14c Chaplin AB. Hooper JF. Weller AS. Willis MC. J. Am. Chem. Soc. 2012; 134: 4885
- 14d Willis MC. McNally SJ. Beswick PJ. Angew. Chem. Int. Ed. 2004; 43: 340
- 15a Moxham GL. Randell-Sly HE. Brayshaw SK. Woodward RL. Weller AS. Willis MC. Angew. Chem. Int. Ed. 2006; 45: 7618
- 15b Moxham GL. Randell-Sly HE. Brayshaw SK. Weller AS. Willis MC. Chem. Eur. J. 2008; 14: 8383
- 15c Osborne JD. Willis MC. Chem. Commun. 2008; 5025
- 16 Tanaka K. Shibata Y. Suda T. Hagiwara Y. Hirano M. Org. Lett. 2007; 9: 1215
- 17 Shibata Y. Tanaka K. J. Am. Chem. Soc. 2009; 131: 12552
- 18 Coulter MM. Kou KG. M. Galligan B. Dong VM. J. Am. Chem. Soc. 2010; 132: 16330
- 19a Murphy SK. Petrone DA. Coulter MM. Dong VM. Org. Lett. 2011; 13: 6216
- 19b Murphy SK. Coulter MM. Dong VM. Chem. Sci. 2012; 3: 355
- 20a Murphy SK. Bruch A. Dong VM. Angew. Chem. Int. Ed. 2014; 53: 2455
- 20b Murphy SK. Bruch A. Dong VM. Chem. Sci. 2015; 6: 174
- 21a Souillart L. Cramer N. Chem. Rev. 2015; 115: 9410
- 21b Marek I. Masarwa A. Delaye P.-O. Leibeling M. Angew. Chem., Int. Ed. 2015; 54: 414
- 21c Chen F. Wang T. Jiao N. Chem. Rev. 2014; 114: 8613
- 21d Dermenci A. Coe JW. Dong G. Org. Chem. Front. 2014; 1: 567
- 21e Flores-Gaspar A. Martin R. Synthesis 2013; 45: 563
- 21f Murakami M. Ito Y. Top. Organomet. Chem. 1999; 3: 97
- 21g C–C Bond Activation . Dong G. Springer; Berlin: 2014
- 22a Guo R. Zheng X. Zhang D. Zhang G. Chem. Sci. 2017; 8: 3002
- 22b Zhao H. Fan X. Yu J. Zhu C. J. Am. Chem. Soc. 2015; 137: 3490
- 22c Ishida N. Shimamoto Y. Yano T. Murakami M. J. Am. Chem. Soc. 2013; 135: 19103
- 22d Ishida N. Sawano S. Masuda Y. Murakami M. J. Am. Chem. Soc. 2012; 134: 17502
- 22e Seiser T. Cramer N. J. Am. Chem. Soc. 2010; 132: 5340
- 22f Álvarez-Bercedo P. Flores-Gaspar A. Correa A. Martin R. J. Am. Chem. Soc. 2010; 132: 466
- 22g Matsumura S. Maeda Y. Nishimura T. Uemura S. J. Am. Chem. Soc. 2003; 125: 8862
- 23 Guo R. Zhang G. J. Am. Chem. Soc. 2017; 139: 12891
For reviews, see:
For reviews, see:
For selected examples, see: