Synlett 2018; 29(16): 2147-2154 DOI: 10.1055/s-0037-1610190
© Georg Thieme Verlag Stuttgart · New York
Transmission of Point Chirality to Axial Chirality for Strong Circular Dichroism in Triarylmethylium-o,o -dimers
a
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan Email:
tak@sci.hokudai.ac.jp
,
Tomohiro Iwai
a
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan Email:
tak@sci.hokudai.ac.jp
,
Yuki Hayashi
a
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan Email:
tak@sci.hokudai.ac.jp
,
Aiichiro Nagaki
b
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
,
Ryo Katoono
a
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan Email:
tak@sci.hokudai.ac.jp
,
Kenshu Fujiwara
c
Department of Life Science, Graduate School of Engineering Science, Akita University, Akita 010-8052, Japan
,
Jun-ichi Yoshida
b
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
,
a
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan Email:
tak@sci.hokudai.ac.jp
› Author Affiliations This work was also supported by the Research Program of the “Five-star Alliance” in “NJRC Mater. & Dev.” MEXT. We thank Grant-in-Aid for Scientific Research on Innovative Areas: “Middle molecular strategy” (No. 2707) and “Reaction Integration” (No. 2105) from MEXT and Grant-in-Aid from JSPS (Nos. 15H03790, 16K13968, 18K05069) Japan.
In memory of Kurt Mislow (1923–2017) and Shô Itô (1924–2018)
Published as part of the Cluster Atropisomerism
Abstract
Triarylmethylium-o,o -dimers adopt a twisted geometry so that two diarylmethyliums are stacked in a slipped manner. Thus, chiral auxiliaries on the aryl groups induce a preference in the axial chirality of the central biphenyl unit. Strong circular dichroism is attained through exciton coupling, which can be used for additional spectral output in their electrochromic behavior. Diastereoselectivity based on π–π stacking exhibits unique solvent effects, thus endowing multifunctional response properties.
Key words
chiral induction -
axial chirality -
exciton coupling -
redox system -
electrochromism -
flow microreactor -
dication -
dye
Supporting Information
The experimental procedures and characterization data for new compounds are given in the Supporting Information. The cyclic voltammogram of (R ,R ,R ,R )-5
2+ in CH2 Cl2 , VT-NMR spectra of (R ,R )-6
2+ (SbCl6
− )2 in CDCl3 , and CD spectra of (R ,R )-6
2+ (SbCl6
− )2 and the related dication salts in various solvents are also given.
Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610190.
Supporting Information
References and Notes
1
Suzuki T.
Takeda T.
Ohta E.
Wada K.
Katoono R.
Kawai K.
Fujiwara K.
Chem. Rec. 2015; 15: 280
2a
Beer G.
Niederalt C.
Grimme S.
Daub J.
Angew. Chem. Int. Ed. 2000; 39: 3252
2b
Nishida J.
Suzuki T.
Ohkita M.
Tsuji T.
Angew. Chem. Int. Ed. 2001; 40: 3251
2c
Higuchi H.
Ohta E.
Kawai H.
Fujiwara K.
Tsuji T.
Suzuki T.
J. Org. Chem. 2003; 68: 6605
2d
Suzuki T.
Tanaka S.
Kawai H.
Fujiwara K.
Chem. Asian J. 2007; 2: 171
2e
Suzuki T.
Ishigaki Y.
Iwai T.
Kawai H.
Fujiwara K.
Ikeda H.
Kano Y.
Mizuno K.
Chem. Eur. J. 2009; 15: 9434
3
Muthyala R.
In
The Chemistry of Leuco Dyes
. Plenum Press; New York and London: 1997
4
Gust D.
Mislow K.
J. Am. Chem. Soc. 1973; 95: 1535
5
Suzuki T.
Iwai T.
Ohta E.
Kawai H.
Fujiwara K.
Tetrahedron Lett. 2007; 48: 3599
6
Mori T.
Inoue Y.
J. Phys. Chem. A 2005; 109: 2728
7
Suzuki T.
Sakano Y.
Iwai T.
Iwashita S.
Miura Y.
Katoono R.
Kawai H.
Fujiwara K.
Tsuji Y.
Fukushima T.
Chem. Eur. J. 2013; 19: 117
8
Berova N.
Nakanishi K.
Woody RW.
In
Circular Dichroism: Principles and Applications
. Wiley-VCH; New York: 2000. 2nd ed. 337-382
Review:
9a
Suzuki T.
Tamaoki H.
Nishida J.
Higuchi H.
Iwai T.
Ishigaki Y.
Hanada K.
Katoono R.
Kawai H.
Fujiwara K.
Fukushima T.
Redox-Mediated Reversible sigma-Bond Formation/Cleavage
. In
Organic Redox Systems
.
Nishinaga T.
Wiley; Hoboken, New Jersey: 2016
9b
Brandt JR.
Pospíšil L.
Bednává L.
Correa de Costa R.
White AJ. P.
Mori T.
Teplỳ F.
Fuchter MJ.
Chem. Commun. 2017; 53: 9053
9c
Wojcik L.
Michaud F.
Gauthier S.
Cabon N.
Le Poul P.
Gloaguen F.
Le Poul N.
J. Org. Chem. 2017; 82: 12395
9d
Yokoi H.
Hiroto S.
Shinokubo H.
J. Am. Chem. Soc. 2018; 140: 4649
10
Suzuki T.
Nishida J.
Tsuji T.
Angew. Chem. Int. Ed. Engl. 1997; 36: 1329
11 Experimental procedures and characterization data for new compounds are given in the Supporting Information. Selected analytical data are as follows:
(R ,R ,R ,R )-5 : Mp 83–86 °C (decomp.). IR (KBr): 2928, 2856, 1608, 1574, 1556, 1460, 1434, 1376, 1280, 1197, 1160, 1110, 1030, 917, 849, 598 cm–1 . 1 H NMR (300 MHz, CD3 CN): δ = 6.73–7.84 (24 H, brm), 4.79 (4 H, m), 1.75 (8 H, brm), 1.24–1.57(44 H, brm), 0.83–1.83 (12 H, brm) ppm. 13 C NMR (75 MHz, CDCl3 ): δ = 190.85, 190.59, 173.70, 173.68, 171.03, 170.85, 146.18, 144.28, 144.17, 142.69, 142.56, 140.63, 136.64, 136.55, 134.18, 134.14, 133.83, 133.81, 133.21, 132.92, 131.88, 131.85, 128.2259, 119.14, 118.33, 118.25, 79.29, 79.19, 77.72, 77.48, 36.35, 36.27, 36.26, 36.20, 32.10, 32.08, 32.05, 29.43, 25.51, 25.49, 25.44, 22.91, 19.76, 19.57, 19.47, 13.98 ppm. FAB-LR-MS: m /z = 997 ([M – 2SbCl6 ]+ , 15%). UV/Vis (CH2 Cl2 ): λmax = 538 (log ε 5.00), 417 (4.57), 280 (4.63) nm. CD (CH2 Cl2 ): λ = 564 (Δε +31), 534 (–19), 406 (+2.9), 281 (–4.6), 267 (+1.5) nm. Anal. Calcd for C70 H92 Cl12 O4 Sb2 : C, 50.45; H, 5.56; Cl, 25.53. Found: C, 50.43; H, 5.31; Cl, 25.45.
(R ,R ,R ,R )-5
2+ (SbCl6
− )2 : Mp 83–86 °C (decomp.). IR (KBr) 2928, 2856, 1608, 1574, 1556, 1460, 1434, 1376, 1280, 1197, 1160, 1110, 1030, 917, 849, 598 cm–1 . 1 H NMR (300 MHz, CD3 CN): δ = 6.73–7.84 (24 H, brm), 4.79 (4 H, m), 1.75 (8 H, brm), 1.24–1.57(44 H, brm), 0.83–1.83 (12 H, brm) ppm. 13 C NMR (75 MHz, CDCl3 ):δ = 190.85, 190.59, 173.70, 173.68, 171.03, 170.85, 146.18, 144.28, 144.17, 142.69, 142.56, 140.63, 136.64, 136.55, 134.18, 134.14, 133.83, 133.81, 133.21, 132.92, 131.88, 131.85, 128.2259, 119.14, 118.33, 118.25, 79.29, 79.19, 77.72, 77.48, 36.35, 36.27, 36.26, 36.20, 32.10, 32.08, 32.05, 29.43, 25.51, 25.49, 25.44, 22.91, 19.76, 19.57, 19.47, 13.98 ppm. FAB-LR-MS: m /z = 997 ([M – 2SbCl6 ]+ , 15%). UV/Vis (CH2 Cl2 ): λmax = 538 (log ε 5.00), 417 (4.57), 280 (4.63) nm. CD (CH2 Cl2 ): λ = 564 (Δε +31), 534 (–19), 406 (+2.9), 281 (–4.6), 267 (+1.5) nm. Anal. Calcd for C70 H92 Cl12 O4 Sb2 : C, 50.45; H, 5.56; Cl, 25.53. Found: C, 50.43; H, 5.31; Cl, 25.45.
(R ,R ,R ,R )-7 : IR (neat): 3406, 2930, 2857, 1606, 1505, 1465, 1376, 1291, 1244, 1175, 1114, 829, 756, 665 cm–1 . 1 H NMR (300 MHz, CDCl3 ): δ = 6.99–7.26 (10 H, m), 6.75–6.83 (12 H, m), 6.07 (2 H, d, J = 7.3 Hz), 4.41 (2 H, s), 4.30–4.36 (4 H, m, J = 6.0 Hz), 1.16–1.82 (52 H, brm), 0.88 (12 H, brm) ppm. 13 C NMR (75 MHz, CDCl3 ): δ = 157.27, 157.07, 144.07, 140.87, 140.58, 138.38, 131.56, 130.24, 129.72, 128.56, 125.84, 125.79, 115.05, 114.89, 83.22, 74.00, 73.82, 36.43, 31.81, 29.28, 25.52, 22.59, 19.73, 14.07 ppm. FD-LR-MS: m /z = 1030 (M+ , BP). FD-HR-MS: m /z calcd for C70 H94 O6 : 1030.7050; found: 1030.7045.
(R ,R )-6 : Mp 138–142 °C (decomp.). IR (KBr): 3042, 2929, 2856, 2799, 1608, 1576, 1505, 1480, 1443, 1376, 1353, 1286, 1247, 1213, 1186, 1125, 1062, 1013, 948, 848, 807, 759, 746, 619, 573 cm–1 . 1 H NMR (300 MHz, C6 D6 ): δ = 7.68–7.63 (3 H, m), 7.59 (1 H, dd, J = 7.9, 1.4 Hz), 7.45 (4 H, br), 7.38 (4H, br), 7.13–7.02 (4 H, m), 6.64 (4 H, brd, J = 7.9 Hz), 6.31 (4 H, brd, J = 7.9 Hz), 4.03 (2 H, br), 2.42 (12 H, s), 1.68–1.52 (2 H, m), 1.39–1.01 (24 H, m), 0.86 (6 H, t, J = 6.9 Hz) ppm. 13 C NMR (100 MHz, C6 D6 ): δ = 156.73, 148.57, 145.79, 145.34, 136.84, 136.64, 129.17, 129.05, 127.90, 127.00, 126.83, 124.68, 124.54, 112.65, 110.03, 73.11, 63.91, 63.65, 39.94, 36.94, 36.88, 32.10, 29.64, 25.80, 22.94, 19.88, 19.85, 14.30 ppm. FD-LR-MS: m /z = 829 (34), 828 (80), 827 (M+ , BP). FD-HR-MS: m /z calcd for C58 H70 N2 O2 : 826.5437; found: 826.5437. UV/Vis (CH2 Cl2 ): λmax = (log ε) 270 (4.61) nm.
(R ,R )-6
2+ (SbCl6
− )2 : Mp 128–132 °C. IR (KBr): 3061, 2927, 2856, 1618, 1606, 1582, 1485, 1464, 1435, 1362, 1315, 1278, 1159, 1109, 1029, 963, 937, 910, 850, 831, 755, 722, 600 cm–1 . 1 H NMR (300 MHz, CDCl3 ): δ = 6.60–8.00 (24 H, brm), 4.72–4.88 (2 H, brm), 3.25 (12 H, m), 1.66–1.90 (4 H, brm), 1.18–1.56 (22 H, brm), 0.87–1.02 (6 H, brm) ppm. 13 C NMR (100 MHz, CDCl3 ): δ = 19.38, 19.45, 19.55, 25.35, 25.47, 29.40, 29.48, 29.49, 32.05, 32.1065, 36.13, 36.18, 36.27, 40.81, 41.36, 41.44, 77.45, 77.61, 78.70, 78.71, 113.92, 114.77, 118.66, 127.24, 127.81, 127.88, 130.70, 130.79, 132.47, 132.52, 132.99, 133.47, 133.64, 133.85, 133.94, 134.17, 136.52, 136.63, 138.98, 140.24, 140.30, 140.38, 140.41, 141.21, 141.26, 142.29, 142.41, 143.08, 143.17, 145.37, 145.39, 157.82, 157.98, 170.95, 172.78, 173.00, 191.52, 191.71 ppm. FD-LR-MS: m /z = 8277 ([M – 2SbCl6 ]+ , BP). FD-HR-MS: m /z calcd for C58 H70 N2 O2 : 826.5437; found: 826.5420.
(R ,R )-8 : Mp 71.0–74.0 °C. IR (KBr): 3411, 2929, 2856, 2800, 1609, 1505, 1466, 1443, 1376, 1351, 1293, 1243, 1162, 1132, 1062, 1132, 1004, 948, 917, 816, 759, 622, 577, 560 cm–1 . 1 H NMR (300 MHz, CDCl3 ): δ = 7.10–6.98 (8 H, m), 6.95 (2 H, d, J = 9.0 Hz), 6.86–6.80 (3 H, m), 6.79–6.73 (5 H, m), 6.63 (4 H, dd, J = 9.0, 1.5 Hz), 6.19 (1 H, d, J = 7.7 Hz), 6.03 (1 H, d, J = 7.7 Hz), 5.17 (1 H, brd, J = 7.9 Hz), 4.39–4.26 (2 H, m), 3.63 (1 H, brd, J = 4.8 Hz), 2.95 (6 H, s), 2.91 (6 H, s) 1.72 (2 H, br), 1.50–1.22 (24 H, m), 0.92–0.83 (6 H, m) ppm. 13 C NMR (100 MHz, CDCl3 ): δ = 157.07, 156.82, 149.56, 149.40, 144.50, 144.03, 141.39, 141.17, 140.71, 138.52, 136.86, 134.69, 131.58, 131.41, 130.28, 130.20, 129.67, 129.37, 128.62, 128.11, 125.92, 125.72, 125.44, 125.39, 114.93, 114.83, 111.73, 111.69, 83.86, 82.64, 82.59, 73.97, 73.92, 73.76, 40.62, 40.55, 36.51, 36.47, 36.37, 31.80, 29.28, 29.25, 25.53, 25.48, 22.57, 19.77, 19.67, 14.06 ppm. FD-LR-MS: m /z = 863 (22), 862 (63), 861 (M+ , BP), 844 (24), 843 (35). FD-HR-MS: m /z calcd for C58 H72 N2 O4 : 860.5492; found: 860.5485.
12
Suzuki T.
Nishida J.
Tsuji T.
Chem. Commun. 1998; 2193
13a
Usutani H.
Tomida Y.
Nagaki A.
Okamoto H.
Nokami T.
Yoshida J.
J. Am. Chem. Soc. 2007; 129: 3046
13b
Nagaki A.
Tomida Y.
Usutani H.
Kim H.
Takabayashi N.
Nokami T.
Okamoto H.
Yoshida J.
Chem. Asian J. 2007; 2: 1513
13c
Nagaki A.
Takabayashi N.
Tomida Y.
Yoshida J.
Org. Lett. 2008; 10: 3937
13d
Nagaki A.
Takabayashi N.
Tomida Y.
Yoshida J.
Beilstein J. Org. Chem. 2009; 5: 16
13e
Suga S.
Yamada D.
Yoshida J.
Chem. Lett. 2010; 39: 404
13f
Yoshida J.
Takahashi Y.
Nagaki A.
Chem. Commun. 2013; 85: 9896
14
Ishigaki Y.
Suzuki T.
Nishida J.
Nagaki A.
Takabayashi N.
Kawai H.
Fujiwara K.
Yoshida J.
Materials 2011; 4: 1906
15a
Saitoh T.
Yoshida S.
Ichikawa J.
Org. Lett. 2004; 6: 4563
15b
Saitoh T.
Yoshida S.
Ichikawa J.
J. Org. Chem. 2006; 71: 6414
16a The amplitude (A) for the couplet is obtained as Δε(λlonger ) – Δε(λshorter ), and the sign is the same as that of the couplet.
16b
Suzuki T.
Tamaoki H.
Wada K.
Katoono R.
Nehira T.
Fujiwara K.
Chem. Commun. 2012; 48, 2812
17
Jerry E.
Nature 1935; 138: 1009
18a
Handy ST.
Grieco PA.
Mineur C.
Ghosez L.
Synlett 1995; 595
18b
Tamion R.
Mineur C.
Ghosez L.
Tetrahedron Lett. 1995; 36: 8977
18c
Kumar A.
Chem. Rev. 2001; 101: 1
19a The p KR+ value for bis(4-dimethylaminophenyl)phenyl methylium (+6.94) [ref. 19b] is much larger than that for bis(4-methoxyphenyl)phenylmethylium (–1.24) [ref. 19c].
19b
Ritchie CD.
Wright DJ.
Huang D.-S.
Kamego AA.
J. Am. Chem. Soc. 1975; 97: 1163
19c
Bunting JW.
Meathrel WG.
Can. J. Chem. 1973; 51: 1965
20a
Yagi S.
Morinaga T.
Nomura T.
Takagishi T.
Mizutani T.
Kitagawa S.
Ogoshi H.
J. Org. Chem. 2001; 66: 3848
20b
Reichert S.
Breit B.
Org. Lett. 2007; 9: 899
20c
Meudtner RM.
Hecht S.
Angew. Chem. Int. Ed. 2008; 47: 4926
20d
Ousaka N.
Sato T.
Kuroda R.
J. Am. Chem. Soc. 2009; 131: 3820
20e
Setsune J.
J. Chem. Sci. 2012; 124: 1151