Subscribe to RSS
DOI: 10.1055/s-0037-1610190
Transmission of Point Chirality to Axial Chirality for Strong Circular Dichroism in Triarylmethylium-o,o-dimers
This work was also supported by the Research Program of the “Five-star Alliance” in “NJRC Mater. & Dev.” MEXT. We thank Grant-in-Aid for Scientific Research on Innovative Areas: “Middle molecular strategy” (No. 2707) and “Reaction Integration” (No. 2105) from MEXT and Grant-in-Aid from JSPS (Nos. 15H03790, 16K13968, 18K05069) Japan.Publication History
Received: 02 May 2018
Accepted after revision: 24 May 2018
Publication Date:
25 June 2018 (online)

In memory of Kurt Mislow (1923–2017) and Shô Itô (1924–2018)
Published as part of the Cluster Atropisomerism
Abstract
Triarylmethylium-o,o-dimers adopt a twisted geometry so that two diarylmethyliums are stacked in a slipped manner. Thus, chiral auxiliaries on the aryl groups induce a preference in the axial chirality of the central biphenyl unit. Strong circular dichroism is attained through exciton coupling, which can be used for additional spectral output in their electrochromic behavior. Diastereoselectivity based on π–π stacking exhibits unique solvent effects, thus endowing multifunctional response properties.
Key words
chiral induction - axial chirality - exciton coupling - redox system - electrochromism - flow microreactor - dication - dyeSupporting Information
- Supporting Information
The experimental procedures and characterization data for new compounds are given in the Supporting Information. The cyclic voltammogram of (R,R,R,R)-5 2+ in CH2Cl2, VT-NMR spectra of (R,R)-6 2+(SbCl6 −)2 in CDCl3, and CD spectra of (R,R)-6 2+(SbCl6 −)2 and the related dication salts in various solvents are also given.
Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610190.-
References and Notes
- 1 Suzuki T. Takeda T. Ohta E. Wada K. Katoono R. Kawai K. Fujiwara K. Chem. Rec. 2015; 15: 280
- 2a Beer G. Niederalt C. Grimme S. Daub J. Angew. Chem. Int. Ed. 2000; 39: 3252
- 2b Nishida J. Suzuki T. Ohkita M. Tsuji T. Angew. Chem. Int. Ed. 2001; 40: 3251
- 2c Higuchi H. Ohta E. Kawai H. Fujiwara K. Tsuji T. Suzuki T. J. Org. Chem. 2003; 68: 6605
- 2d Suzuki T. Tanaka S. Kawai H. Fujiwara K. Chem. Asian J. 2007; 2: 171
- 2e Suzuki T. Ishigaki Y. Iwai T. Kawai H. Fujiwara K. Ikeda H. Kano Y. Mizuno K. Chem. Eur. J. 2009; 15: 9434
- 3 Muthyala R. In The Chemistry of Leuco Dyes . Plenum Press; New York and London: 1997
- 4 Gust D. Mislow K. J. Am. Chem. Soc. 1973; 95: 1535
- 5 Suzuki T. Iwai T. Ohta E. Kawai H. Fujiwara K. Tetrahedron Lett. 2007; 48: 3599
- 6 Mori T. Inoue Y. J. Phys. Chem. A 2005; 109: 2728
- 7 Suzuki T. Sakano Y. Iwai T. Iwashita S. Miura Y. Katoono R. Kawai H. Fujiwara K. Tsuji Y. Fukushima T. Chem. Eur. J. 2013; 19: 117
- 8 Berova N. Nakanishi K. Woody RW. In Circular Dichroism: Principles and Applications . Wiley-VCH; New York: 2000. 2nd ed. 337-382
- 9a Suzuki T. Tamaoki H. Nishida J. Higuchi H. Iwai T. Ishigaki Y. Hanada K. Katoono R. Kawai H. Fujiwara K. Fukushima T. Redox-Mediated Reversible sigma-Bond Formation/Cleavage . In Organic Redox Systems . Nishinaga T. Wiley; Hoboken, New Jersey: 2016
- 9b Brandt JR. Pospíšil L. Bednává L. Correa de Costa R. White AJ. P. Mori T. Teplỳ F. Fuchter MJ. Chem. Commun. 2017; 53: 9053
- 9c Wojcik L. Michaud F. Gauthier S. Cabon N. Le Poul P. Gloaguen F. Le Poul N. J. Org. Chem. 2017; 82: 12395
- 9d Yokoi H. Hiroto S. Shinokubo H. J. Am. Chem. Soc. 2018; 140: 4649
- 10 Suzuki T. Nishida J. Tsuji T. Angew. Chem. Int. Ed. Engl. 1997; 36: 1329
- 11 Experimental procedures and characterization data for new compounds are given in the Supporting Information. Selected analytical data are as follows: (R,R,R,R)-5: Mp 83–86 °C (decomp.). IR (KBr): 2928, 2856, 1608, 1574, 1556, 1460, 1434, 1376, 1280, 1197, 1160, 1110, 1030, 917, 849, 598 cm–1. 1H NMR (300 MHz, CD3CN): δ = 6.73–7.84 (24 H, brm), 4.79 (4 H, m), 1.75 (8 H, brm), 1.24–1.57(44 H, brm), 0.83–1.83 (12 H, brm) ppm. 13C NMR (75 MHz, CDCl3): δ = 190.85, 190.59, 173.70, 173.68, 171.03, 170.85, 146.18, 144.28, 144.17, 142.69, 142.56, 140.63, 136.64, 136.55, 134.18, 134.14, 133.83, 133.81, 133.21, 132.92, 131.88, 131.85, 128.2259, 119.14, 118.33, 118.25, 79.29, 79.19, 77.72, 77.48, 36.35, 36.27, 36.26, 36.20, 32.10, 32.08, 32.05, 29.43, 25.51, 25.49, 25.44, 22.91, 19.76, 19.57, 19.47, 13.98 ppm. FAB-LR-MS: m/z = 997 ([M – 2SbCl6]+, 15%). UV/Vis (CH2Cl2): λmax = 538 (log ε 5.00), 417 (4.57), 280 (4.63) nm. CD (CH2Cl2): λ = 564 (Δε +31), 534 (–19), 406 (+2.9), 281 (–4.6), 267 (+1.5) nm. Anal. Calcd for C70H92Cl12O4Sb2: C, 50.45; H, 5.56; Cl, 25.53. Found: C, 50.43; H, 5.31; Cl, 25.45. (R,R,R,R)-5 2+(SbCl6 −)2: Mp 83–86 °C (decomp.). IR (KBr) 2928, 2856, 1608, 1574, 1556, 1460, 1434, 1376, 1280, 1197, 1160, 1110, 1030, 917, 849, 598 cm–1. 1H NMR (300 MHz, CD3CN): δ = 6.73–7.84 (24 H, brm), 4.79 (4 H, m), 1.75 (8 H, brm), 1.24–1.57(44 H, brm), 0.83–1.83 (12 H, brm) ppm. 13C NMR (75 MHz, CDCl3):δ = 190.85, 190.59, 173.70, 173.68, 171.03, 170.85, 146.18, 144.28, 144.17, 142.69, 142.56, 140.63, 136.64, 136.55, 134.18, 134.14, 133.83, 133.81, 133.21, 132.92, 131.88, 131.85, 128.2259, 119.14, 118.33, 118.25, 79.29, 79.19, 77.72, 77.48, 36.35, 36.27, 36.26, 36.20, 32.10, 32.08, 32.05, 29.43, 25.51, 25.49, 25.44, 22.91, 19.76, 19.57, 19.47, 13.98 ppm. FAB-LR-MS: m/z = 997 ([M – 2SbCl6]+, 15%). UV/Vis (CH2Cl2): λmax = 538 (log ε 5.00), 417 (4.57), 280 (4.63) nm. CD (CH2Cl2): λ = 564 (Δε +31), 534 (–19), 406 (+2.9), 281 (–4.6), 267 (+1.5) nm. Anal. Calcd for C70H92Cl12O4Sb2: C, 50.45; H, 5.56; Cl, 25.53. Found: C, 50.43; H, 5.31; Cl, 25.45. (R,R,R,R)-7: IR (neat): 3406, 2930, 2857, 1606, 1505, 1465, 1376, 1291, 1244, 1175, 1114, 829, 756, 665 cm–1. 1H NMR (300 MHz, CDCl3): δ = 6.99–7.26 (10 H, m), 6.75–6.83 (12 H, m), 6.07 (2 H, d, J = 7.3 Hz), 4.41 (2 H, s), 4.30–4.36 (4 H, m, J = 6.0 Hz), 1.16–1.82 (52 H, brm), 0.88 (12 H, brm) ppm. 13C NMR (75 MHz, CDCl3): δ = 157.27, 157.07, 144.07, 140.87, 140.58, 138.38, 131.56, 130.24, 129.72, 128.56, 125.84, 125.79, 115.05, 114.89, 83.22, 74.00, 73.82, 36.43, 31.81, 29.28, 25.52, 22.59, 19.73, 14.07 ppm. FD-LR-MS: m/z = 1030 (M+, BP). FD-HR-MS: m/z calcd for C70H94O6: 1030.7050; found: 1030.7045. (R,R)-6: Mp 138–142 °C (decomp.). IR (KBr): 3042, 2929, 2856, 2799, 1608, 1576, 1505, 1480, 1443, 1376, 1353, 1286, 1247, 1213, 1186, 1125, 1062, 1013, 948, 848, 807, 759, 746, 619, 573 cm–1. 1H NMR (300 MHz, C6D6): δ = 7.68–7.63 (3 H, m), 7.59 (1 H, dd, J = 7.9, 1.4 Hz), 7.45 (4 H, br), 7.38 (4H, br), 7.13–7.02 (4 H, m), 6.64 (4 H, brd, J = 7.9 Hz), 6.31 (4 H, brd, J = 7.9 Hz), 4.03 (2 H, br), 2.42 (12 H, s), 1.68–1.52 (2 H, m), 1.39–1.01 (24 H, m), 0.86 (6 H, t, J = 6.9 Hz) ppm. 13C NMR (100 MHz, C6D6): δ = 156.73, 148.57, 145.79, 145.34, 136.84, 136.64, 129.17, 129.05, 127.90, 127.00, 126.83, 124.68, 124.54, 112.65, 110.03, 73.11, 63.91, 63.65, 39.94, 36.94, 36.88, 32.10, 29.64, 25.80, 22.94, 19.88, 19.85, 14.30 ppm. FD-LR-MS: m/z = 829 (34), 828 (80), 827 (M+, BP). FD-HR-MS: m/z calcd for C58H70N2O2: 826.5437; found: 826.5437. UV/Vis (CH2Cl2): λmax = (log ε) 270 (4.61) nm. (R,R)-6 2+(SbCl6 −)2: Mp 128–132 °C. IR (KBr): 3061, 2927, 2856, 1618, 1606, 1582, 1485, 1464, 1435, 1362, 1315, 1278, 1159, 1109, 1029, 963, 937, 910, 850, 831, 755, 722, 600 cm–1. 1H NMR (300 MHz, CDCl3): δ = 6.60–8.00 (24 H, brm), 4.72–4.88 (2 H, brm), 3.25 (12 H, m), 1.66–1.90 (4 H, brm), 1.18–1.56 (22 H, brm), 0.87–1.02 (6 H, brm) ppm. 13C NMR (100 MHz, CDCl3): δ = 19.38, 19.45, 19.55, 25.35, 25.47, 29.40, 29.48, 29.49, 32.05, 32.1065, 36.13, 36.18, 36.27, 40.81, 41.36, 41.44, 77.45, 77.61, 78.70, 78.71, 113.92, 114.77, 118.66, 127.24, 127.81, 127.88, 130.70, 130.79, 132.47, 132.52, 132.99, 133.47, 133.64, 133.85, 133.94, 134.17, 136.52, 136.63, 138.98, 140.24, 140.30, 140.38, 140.41, 141.21, 141.26, 142.29, 142.41, 143.08, 143.17, 145.37, 145.39, 157.82, 157.98, 170.95, 172.78, 173.00, 191.52, 191.71 ppm. FD-LR-MS: m/z = 8277 ([M – 2SbCl6]+, BP). FD-HR-MS: m/z calcd for C58H70N2O2: 826.5437; found: 826.5420. (R,R)-8: Mp 71.0–74.0 °C. IR (KBr): 3411, 2929, 2856, 2800, 1609, 1505, 1466, 1443, 1376, 1351, 1293, 1243, 1162, 1132, 1062, 1132, 1004, 948, 917, 816, 759, 622, 577, 560 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.10–6.98 (8 H, m), 6.95 (2 H, d, J = 9.0 Hz), 6.86–6.80 (3 H, m), 6.79–6.73 (5 H, m), 6.63 (4 H, dd, J = 9.0, 1.5 Hz), 6.19 (1 H, d, J = 7.7 Hz), 6.03 (1 H, d, J = 7.7 Hz), 5.17 (1 H, brd, J = 7.9 Hz), 4.39–4.26 (2 H, m), 3.63 (1 H, brd, J = 4.8 Hz), 2.95 (6 H, s), 2.91 (6 H, s) 1.72 (2 H, br), 1.50–1.22 (24 H, m), 0.92–0.83 (6 H, m) ppm. 13C NMR (100 MHz, CDCl3): δ = 157.07, 156.82, 149.56, 149.40, 144.50, 144.03, 141.39, 141.17, 140.71, 138.52, 136.86, 134.69, 131.58, 131.41, 130.28, 130.20, 129.67, 129.37, 128.62, 128.11, 125.92, 125.72, 125.44, 125.39, 114.93, 114.83, 111.73, 111.69, 83.86, 82.64, 82.59, 73.97, 73.92, 73.76, 40.62, 40.55, 36.51, 36.47, 36.37, 31.80, 29.28, 29.25, 25.53, 25.48, 22.57, 19.77, 19.67, 14.06 ppm. FD-LR-MS: m/z = 863 (22), 862 (63), 861 (M+, BP), 844 (24), 843 (35). FD-HR-MS: m/z calcd for C58H72N2O4: 860.5492; found: 860.5485.
- 12 Suzuki T. Nishida J. Tsuji T. Chem. Commun. 1998; 2193
- 13a Usutani H. Tomida Y. Nagaki A. Okamoto H. Nokami T. Yoshida J. J. Am. Chem. Soc. 2007; 129: 3046
- 13b Nagaki A. Tomida Y. Usutani H. Kim H. Takabayashi N. Nokami T. Okamoto H. Yoshida J. Chem. Asian J. 2007; 2: 1513
- 13c Nagaki A. Takabayashi N. Tomida Y. Yoshida J. Org. Lett. 2008; 10: 3937
- 13d Nagaki A. Takabayashi N. Tomida Y. Yoshida J. Beilstein J. Org. Chem. 2009; 5: 16
- 13e Suga S. Yamada D. Yoshida J. Chem. Lett. 2010; 39: 404
- 13f Yoshida J. Takahashi Y. Nagaki A. Chem. Commun. 2013; 85: 9896
- 14 Ishigaki Y. Suzuki T. Nishida J. Nagaki A. Takabayashi N. Kawai H. Fujiwara K. Yoshida J. Materials 2011; 4: 1906
- 15a Saitoh T. Yoshida S. Ichikawa J. Org. Lett. 2004; 6: 4563
- 15b Saitoh T. Yoshida S. Ichikawa J. J. Org. Chem. 2006; 71: 6414
- 16a The amplitude (A) for the couplet is obtained as Δε(λlonger) – Δε(λshorter), and the sign is the same as that of the couplet.
- 16b Suzuki T. Tamaoki H. Wada K. Katoono R. Nehira T. Fujiwara K. Chem. Commun. 2012; 48, 2812
- 17 Jerry E. Nature 1935; 138: 1009
- 18a Handy ST. Grieco PA. Mineur C. Ghosez L. Synlett 1995; 595
- 18b Tamion R. Mineur C. Ghosez L. Tetrahedron Lett. 1995; 36: 8977
- 18c Kumar A. Chem. Rev. 2001; 101: 1
- 19a The pKR+ value for bis(4-dimethylaminophenyl)phenyl methylium (+6.94) [ref. 19b] is much larger than that for bis(4-methoxyphenyl)phenylmethylium (–1.24) [ref. 19c].
- 19b Ritchie CD. Wright DJ. Huang D.-S. Kamego AA. J. Am. Chem. Soc. 1975; 97: 1163
- 19c Bunting JW. Meathrel WG. Can. J. Chem. 1973; 51: 1965
- 20a Yagi S. Morinaga T. Nomura T. Takagishi T. Mizutani T. Kitagawa S. Ogoshi H. J. Org. Chem. 2001; 66: 3848
- 20b Reichert S. Breit B. Org. Lett. 2007; 9: 899
- 20c Meudtner RM. Hecht S. Angew. Chem. Int. Ed. 2008; 47: 4926
- 20d Ousaka N. Sato T. Kuroda R. J. Am. Chem. Soc. 2009; 131: 3820
- 20e Setsune J. J. Chem. Sci. 2012; 124: 1151
Review: