Subscribe to RSS
DOI: 10.1055/s-0037-1610741
Umpolung of Enamines: An Overview on Strategies and Synthons
Publication History
Received: 18 November 2019
Accepted after revision: 03 December 2019
Publication Date:
13 January 2020 (online)
Published as part of the Special Section 11th EuCheMS Organic Division Young Investigator Workshop
Abstract
Umpolung strategies are of considerable interest to organic chemists because they provide alternative synthetic routes to those imposed by the natural polarity of classical synthons. Reverse-polarity reactions of aldehydes, α,β-unsaturated carbonyl compounds, and imines are deeply embedded in the methodology of organic synthesis. In recent years, umpolung of enols and enamines has received much attention as a novel strategy to access α-substituted ketones. Here, state-of-the-art approaches to umpolung of enamine reactivity are discussed, with a particular focus on recent developments in this field from the author’s research group.
1 Introduction
2 Approaches toward Umpolung of Enamines
3 Umpolung of Enamines through Single-Electron Oxidation
4 Azadienes as Synthetic Equivalents of Enamine Umpolung Synthons
5 Enamines Possessing a Leaving Group at the Nitrogen Atom
6 Enamines Possessing a Directing Group at the Nitrogen Atom
7 Summary and Outlook
-
References
- 1a Seebach D. Angew. Chem. Int. Ed. 1979; 18: 239
- 1b Evans DA, Andrews GC. Acc. Chem. Res. 1974; 7: 147
- 1c Corey EJ. Pure Appl. Chem. 1967; 14: 19
- 2 For a review see: Vatsadze SZ, Loginova YD, dos Passos Gomes G, Alabugin IV. Chem. Eur. J. 2017; 23: 3225
- 3 Gröbel B.-T, Seebach D. Synthesis 1977; 357
- 4a Gaggero N, Pandini S. Org. Biomol. Chem. 2017; 15: 6867
- 4b Wöhler F, Liebig J. Ann. Pharm. (Lemgo, Ger.) 1832; 3: 249
- 5a Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
- 5b Breslow R. J. Am. Chem. Soc. 1958; 80: 3719
- 5c Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
- 5d Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
- 6a Brehme R, Enders D, Fernandez R, Lassaletta JM. Eur. J. Org. Chem. 2007; 5629
- 6b Wu Y, Hu L, Li Z, Deng L. Nature 2015; 523: 445
- 6c Hu B, Deng L. Angew. Chem. Int. Ed. 2018; 57: 2233
- 6d Li Z, Hu B, Wu Y, Fei C, Deng L. Proc. Natl. Acad. Sci. U. S. A. 2018; 115: 1730
- 7 Patra A, Mukherjee S, Das TK, Jain S, Gonnade RG, Biju AT. Angew. Chem. Int. Ed. 2017; 56: 2730
- 8 Fischer C, Smith SW, Powell DA, Fu GC. J. Am. Chem. Soc. 2006; 128: 1472
- 9a Shneider OS, Pisarevsky E, Fristrup P, Szpilman AM. Org. Lett. 2015; 17: 282
- 9b Xu Z, Chen H, Wang Z, Ying A, Zhang L. J. Am. Chem. Soc. 2016; 138: 5515
- 9c Kaiser D, Teskey CJ, Adler P, Maulide N. J. Am. Chem. Soc. 2017; 139: 16040
- 9d Tang X, Wu N, Zhai R, Wu Z, Mi J, Luo R, Xu Z. Org. Biomol. Chem. 2019; 17: 966
- 9e Miyata O, Miyoshi T, Ueda M. ARKIVOC 2013; (ii): 60
- 10a Tanimoto H. J. Synth. Org. Chem., Jpn. 2011; 69: 823
- 10b Malcolmson SJ, Li K, Shao X. Synlett 2019; 30: 1253
- 10c Seebach D, Enders D. Angew. Chem. Int. Ed. 1975; 14: 15
- 11 For a review, see: Sukhorukov AYu, Sukhanova AA, Zlotin SG. Tetrahedron 2016; 72: 6191
- 12 Narasaka K, Okauchi T, Tanaka K, Murakami M. Chem. Lett. 1992; 21: 2099
- 13 Beeson TD, Mastracchio A, Hong J.-B, Ashton K, MacMillan DW. C. Science 2007; 316: 582
- 14a Mečiarová M, Tisovský P, Šebesta R. New J. Chem. 2016; 40: 4855
- 14b Zhu L, Wang D, Jia Z, Lin Q, Huang M, Luo S. ACS Catal. 2018; 8: 5466
- 15a Jang H.-Y, Hong J.-B, MacMillan DW. C. J. Am. Chem. Soc. 2007; 129: 7004
- 15b Yasu Y, Koike T, Akita M. Chem. Commun. 2012; 48: 5355
- 15c Tisovský P, Mečiarová M, Šebesta R. Org. Biomol. Chem. 2014; 12: 9446
- 16a Pham PV, Ashton K, MacMillan DW. C. Chem. Sci. 2011; 2: 1470
- 16b Mastracchio A, Warkentin AA, Walji AM, MacMillan DW. C. Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 20648
- 17 Wilson JE, Casarez AD, MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 11332
- 18 Kim H, MacMillan DW. C. J. Am. Chem. Soc. 2008; 130: 398
- 19a Rendler S, MacMillan DW. C. J. Am. Chem. Soc. 2010; 132: 5027
- 19b Jui NT, Lee EC. Y, MacMillan DW. C. J. Am. Chem. Soc. 2010; 132: 10015
- 19c Capacci AG, Malinowski JT, McAlpine NJ, Kuhne J, MacMillan DW. C. Nat. Chem. 2017; 9: 1073
- 19d Ye L, Gu Q.-S, Tian Y, Meng X, Chen G.-C, Liu X.-Y. Nat. Commun. 2018; 9: 227
- 20 Amatore M, Beeson TD, Brown SP, MacMillan DW. C. Angew. Chem. Int. Ed. 2009; 48: 5121
- 21 Tisovský P, Mečiarová M, Šebesta R. Chem. Pap. 2014; 68: 1113
- 22 For review on nitroalkene chemistry, see: Barrett AG. M, Graboski GG. Chem. Rev. 1986; 86: 751
- 23 For a review, see: Alonso DA, Baeza A, Chinchilla R, Gómez C, Guillena G, Pastor IM, Ramón DJ. Molecules 2017; 22: 895
- 24a Barnes DM, Ji J, Fickes MG, Fitzgerald MA, King SA, Morton HE, Plagge FA, Preskill M, Wagaw SH, Wittenberger SJ, Zhang J. J. Am. Chem. Soc. 2002; 124: 13097
- 24b Uraguchi D, Nakashima D, Ooi T. J. Am. Chem. Soc. 2009; 131: 7242
- 24c Tsakos M, Kokotos CG, Kokotos G. Adv. Synth. Catal. 2012; 354: 740 ; corrigendum: Adv. Synth. Catal. 2012, 354, 768
- 24d Uraguchi D, Kinoshita N, Nakashima D, Ooi T. Chem. Sci. 2012; 3: 3161
- 25 For a review on the Nef reaction, see: Ballini R, Petrini M. Adv. Synth. Catal. 2015; 357: 2371
- 26a Lopes SM. M, Cardoso AL, Lemos A, Pinho e Melo TM. V. D. Chem. Rev. 2018; 118: 11324
- 26b Gilchrist TL. Chem. Soc. Rev. 1983; 12: 53
- 27a Witek JA, Weinreb SM. Org. Lett. 2011; 13: 1258
- 27b Korboukh I, Kumar P, Weinreb SM. J. Am. Chem. Soc. 2007; 129: 10342
- 27c Ohno M, Torimitsu S, Naruse N, Okamoto M, Sakai I. Bull. Chem. Soc. Jpn. 1966; 39: 1129
- 27d Li P, Majireck MM, Witek JA, Weinreb SM. Tetrahedron Lett. 2010; 51: 2032
- 27e Ustinov A, Dilman A, Ioffe S, Belyakov P, Strelenko YA. Russ. Chem. Bull. 2002; 51: 1455
- 28a Sengupta R, Weinreb SM. Synthesis 2012; 44: 2933
- 28b Sengupta R, Witek JA, Weinreb SM. Tetrahedron 2011; 67: 8229
- 29 Goldcamp MJ, Rosa DT, Landers NA, Mandel SM, Krause Bauer JA, Baldwin MJ. Synthesis 2000; 2033
- 30a Naumovich YA, Golovanov IS, Sukhorukov AYu, Ioffe SL. Eur. J. Org. Chem. 2017; 2017: 6209
- 30b Ohno M, Naruse N, Torimitsu S, Okamoto M. Bull. Chem. Soc. Jpn. 1966; 39: 1119
- 31a Hatcher JM, Kohler MC, Coltart DM. Org. Lett. 2011; 13: 3810
- 31b Naumovich YA, Kokuev AO, Sukhorukov AYu, Ioffe SL. Synlett 2018; 29: 1334
- 32 Naumovich YA, Ioffe SL, Sukhorukov AYu. J. Org. Chem. 2019; 84: 7244
- 33 Ushakov PY, Tabolin AA, Ioffe SL, Sukhorukov AYu. Eur. J. Org. Chem. 2019; 2019: 1888
- 34 Zhmurov PA, Khoroshutina YA, Novikov RA, Golovanov IS, Sukhorukov AYu, Ioffe SL. Chem. Eur. J. 2017; 23: 4570
- 35 For a review on NSA, see: Boyko YD, Dorokhov VS, Sukhorukov AYu, Ioffe SL. Beilstein J. Org. Chem. 2017; 13: 2214
- 36 Dilman A, Tishkov A, Lyapkalo I, Ioffe S, Strelenko YA, Tartakovsky V. Synthesis 1998; 181
- 37 Sacks CE, Fuchs PL. J. Am. Chem. Soc. 1975; 97: 7372
- 38 Hatcher JM, Coltart DM. J. Am. Chem. Soc. 2010; 132: 4546
- 39 Miles DH, Guasch J, Toste FD. J. Am. Chem. Soc. 2015; 137: 7632
- 40 Ciccolini C, De Crescentini L, Mantellini F, Santeusanio S, Favi G. Org. Lett. 2019; 21: 4388
- 41a Attanasi OA, De Crescentini L, Filippone P, Mantellini F, Santeusanio S. ARKIVOC 2002; (xi): 274
- 41b Attanasi OA, De Crescentini L, Favi G, Filippone P, Mantellini F, Perrulli FR, Santeusanio S. Eur. J. Org. Chem. 2009; 2009: 3109
- 42 Li K, Shao X, Tseng L, Malcolmson SJ. J. Am. Chem. Soc. 2018; 140: 598
- 43 Shao X, Li K, Malcolmson SJ. J. Am. Chem. Soc. 2018; 140: 7083
- 44a Fu J, Zanoni G, Anderson EA, Bi X. Chem. Soc. Rev. 2017; 46: 7208
- 44b Hu B, DiMagno SG. Org. Biomol. Chem. 2015; 13: 3844
- 45 Chen W, Hu M, Wu J, Zou H, Yu Y. Org. Lett. 2010; 12: 3863
- 46 Reddy NN. K, Nageswara Rao S, Ravi C, Adimurthy S. ACS Omega 2017; 2: 5235
- 47a Chen B, Guo S, Guo X, Zhang G, Yu Y. Org. Lett. 2015; 17: 4698
- 47b Zhu Z, Tang X, Li J, Li X, Wu W, Deng G, Jiang H. Org. Lett. 2017; 19: 1370
- 48a Sukhorukov A. Yu.; Adv. Synth. Catal.; DOI: 10.1002/adsc.201900718
- 48b Tabolin AA, Ioffe SL. Chem. Rev. 2014; 114: 5426
- 49a Miyoshi T, Miyakawa T, Ueda M, Miyata O. Angew. Chem. Int. Ed. 2011; 50: 928
- 49b Miyoshi T, Sato S, Tanaka H, Hasegawa C, Ueda M, Miyata O. Tetrahedron Lett. 2012; 53: 4188
- 49c Sato S, Takeda N, Miyoshi T, Ueda M, Miyata O. Eur. J. Org. Chem. 2015; 2015: 3899
- 49d Nandi RK, Takeda N, Ueda M, Miyata O. Tetrahedron Lett. 2016; 57: 2269
- 50 Takeda N, Furuishi M, Nishijima Y, Futaki E, Ueda M, Shinada T, Miyata O. Org. Biomol. Chem. 2018; 16: 8940
- 51 Takeda N, Futaki E, Kobori Y, Ueda M, Miyata O. Angew. Chem. Int. Ed. 2017; 56: 16342
- 52 Tishkov AA, Lesiv AV, Khomutova YA, Strelenko YA, Nesterov ID, Antipin MYu, Ioffe SL, Denmark SE. J. Org. Chem. 2003; 68: 9477
- 53 For a review, see: Denmark SE, Thorarensen A. Chem. Rev. 1996; 96: 137
- 54 For a review, see: Tabolin AA, Sukhorukov AYu, Ioffe SL, Dilman AD. Synthesis 2017; 49: 3255
- 55 Sukhorukov AYu, Kapatsyna MA, Yi TL. T, Park HR, Naumovich YA, Zhmurov PA, Khomutova YA, Ioffe SL, Tartakovsky VA. Eur. J. Org. Chem. 2014; 2014: 8148
- 56 Naumovich YA, Buckland VE, Sen’ko DA, Nelyubina YV, Khoroshutina YA, Sukhorukov AYu, Ioffe SL. Org. Biomol. Chem. 2016; 14: 3963
- 57 Tishkov AA, Dilman AD, Faustov VI, Birukov AA, Lysenko KS, Belyakov PA, Ioffe SL, Strelenko YA, Antipin MYu. J. Am. Chem. Soc. 2002; 124: 11358
- 58 Dilman AD, Ioffe SL, Mayr H. J. Org. Chem. 2001; 66: 3196
- 59 Mikhaylov AA, Dilman AD, Struchkova MI, Khomutova YA, Korlyukov AA, Ioffe SL, Tartakovsky VA. Tetrahedron 2011; 67: 4584
- 60 Lukács A, Szabó L, Gács-Baitz E, Bombicz P, Dobó A, Kalaus G, Szántay C. Heterocycles 1998; 48: 2507
- 61a Lepifre F, Cottineau B, Mousset D, Bouyssou P, Coudert G. Tetrahedron Lett. 2004; 45: 483
- 61b Cottineau B, Gillaizeau I, Farard J, Auclair M.-L, Coudert G. Synlett 2007; 1925
For selected articles, see:
For a review, see:
For a review, see:
Reviews:
For selected articles, see:
For reviews, see:
For selected articles, see:
Selected articles:
For reviews on the synthesis of heterocycles via AZA; see:
For reviews on the chemistry of vinyl azides, see:
For reviews, see: