Subscribe to RSS
DOI: 10.1055/s-0037-1610837
Synthesis of Poly(heteroarylenevinylene) Derivatives via Rhodium-Catalyzed Hydroarylation of Alkynes
We thank NSERC, the University of Waterloo, and the Canada Foundation for Innovation and the Canada Research Chairs Program (CRC-Tier II, D.J.S.) for financial support. S.S. thanks the Government of Ontario for an Ontario Graduate Scholarship. L.V. thanks NSERC for a postgraduate scholarship. A.J.K thanks NSERC for an undergraduate research student award.Publication History
Received: 03 October 2018
Accepted after revision: 29 October 2018
Publication Date:
12 November 2018 (online)
§ These authors contributed equally to this work.
Abstract
Organic electronics has developed into a significant field of research and industry in the last decade. The progress has been enabled by the many advancements made in synthetic technologies, which allow for the design of a plethora of interesting material candidates. Poly(p-phenylenevinylene) derivatives (PPVs) are a particularly interesting class of polymers that were among the first to garner attention. However, due to their demanding syntheses, limited scope, and relative intolerance to heterocycles, PPVs have fallen out of popularity. New synthetic methods, such as direct C–H bond activation, have emerged that allow for the creation of polyheteroaromatics through the use of simpler starting materials than those used in traditional cross-coupling strategies. Here, we report an extension of a hydroarylation reaction to the synthesis of poly(heteroarylenevinylene) derivatives (PHAVs) containing various desirable heterocycles with Mn values ranging from 8 to 23 kDa without producing stoichiometric amounts of waste.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610837.
- Supporting Information
-
References and Notes
- 1a Yoon M.-H, Kim C, Facchetti A, Marks TJ. J. Am. Chem. Soc. 2006; 128: 12851
- 1b Horowitz G. Adv. Mater. 1998; 5: 365
- 1c Yanming S, Yunqi L, Daoben Z. J. Mater. Chem. 2005; 15: 53
- 2a Günes S, Neugebauer H, Sariciftci NS. Chem. Rev. 2007; 107: 1324
- 2b Kippelen B, Brédas J.-L. Energy Environ. Sci. 2009; 251
- 3a Geffroy B, le Roy P, Prat C. Polym. Int. 2006; 55: 572
- 3b Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DD. C, Dos Santos DA, Brédas JL, Lögdlund M, Salaneck WR. Nature 1999; 397: 121
- 4 Crone B, Dodabalapur A, Lin Y.-Y, Filas RW, Bao Z, LaDuca A, Sarpeshkar R, Katz HE, Li W. Nature 2000; 403: 521
- 5 Zhou J, Wan X, Liu Y, Zuo Y, Li Z, He G, Long G, Ni W, Li C, Su X, Chen Y. J. Am. Chem. Soc. 2012; 134: 16345
- 6 Bundgaard E, Krebs FC. Sol. Energy Mater. Sol. Cells 2007; 91: 954
- 7a Facchetti A. Chem. Mater. 2011; 23: 733
- 7b Cheng Y.-J, Yang S.-H, Hsu C.-S. Chem. Rev. 2009; 109: 5868
- 7c Shirota Y. J. Mater. Chem. 1999; 10: 1
- 8 Burroughes JH, Bradley DD. C, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB. Nature 1990; 347: 539
- 9 Gilch HG, Wheelwright WL. J. Polym. Sci., Part A-1: Polym. Chem. 1966; 4: 1337
- 10 Becker H, Spreitzer H, Ibrom K, Kreuder W. Macromolecules 1999; 32: 4925
- 11a Junkers T, Vandenbergh J, Adriaensens P, Lutsen L, Vanderzande D. Polym. Chem. 2012; 3: 275
- 11b Wessling RA. J. Polym. Sci.: Polym. Symp. 1985; 72: 55
- 12 Yu C.-Y, Chen C.-P, Chan S.-H, Hwang G.-W, Ting C. Chem. Mater. 2009; 21: 3262
- 13 Henckens A, Colladet K, Fourier S, Cleij TJ, Lutsen L, Gelan J, Vanderzande D. Macromolecules 2005; 38: 19
- 14 Henckens A, Duyssens I, Lutsen L, Vanderzande D, Cleij TJ. Polymer 2006; 1: 123
- 15 Marsella MJ, Fu D.-K, Swager TM. Adv. Mater. 1995; 7: 145
- 16a Estrada LA, Deininger JJ, Kamenov GD, Reynolds JR. ACS Macro Lett. 2013; 2: 869
- 16b Kaake L, Dang X.-D, Leong WL, Zhang Y, Heeger A, Nguyen T.-Q. Adv. Mater. 2013; 25: 1706
- 17a Bura T, Blaskovits T, Leclerc M. J. Am. Chem. Soc. 2016; 138: 10056
- 17b Schipper DJ, Fagnou K. Chem. Mater. 2011; 23: 1594
- 17c Gobalasingham NS, Thompson BC. Prog. Polym. Sci. 2018; 83: 135
- 17d Mercier LG, Leclerc M. Acc. Chem. Res. 2013; 46: 1597
- 18 Pouliot J.-R, Grenier F, Blaskovits JT, Beaupré S, Leclerc M. Chem. Rev. 2016; 116: 14225
- 19 Zhou H, Yang L, Stuart AC, Price SC, Liu S, You W. Angew. Chem. Int. Ed. 2011; 50: 2995
- 20 Ong BS, Wu Y, Gardner S. J. Am. Chem. Soc. 2004; 126: 3378
- 21 Li Q, Zou J, Chen J, Liu Z, Qin J, Li Z, Cao Y. J. Phys. Chem. B 2009; 113: 5816
- 22 Mirabal RA, Vanderzwet L, Abuadas S, Emmett MR, Schipper D. Chem. Eur. J. 2018; 24: 12231
- 23 Schipper DJ, Hitchinson M, Fagnou K. J. Am. Chem. Soc. 2010; 132: 6910
- 24 Poly[6-(dec-1-yn-1-yl)-N,N-dimethyl-1H-indole-1-carboxamide] (2): To a microwave vial was added indole (1; 64.9 mg, 0.200 mmol), cesium pivalate (2.3 mg, 0.01 mmol), pivalic acid (204 mg, 2.00 mmol), and tetrahydrofuran (0.8 mL). To the stirred solution was added tris(acetonitrile)pentamethylcyclopentadienylrhodium(III) hexafluoroantimonate (4.16 mg, 0.005 mmol), the vial was sealed, and the solution was heated to 110 °C. After four hours, additional tris(acetonitrile)pentamethylcyclopentadienylrhodium(III) hexafluoroantimonate (4.16 mg, 0.005 mmol) was added and the reaction vessel was resealed. After three hours, the polymer was precipitated by pouring the reaction mixture into methanol and isolated by filtration. Polymers with weights of Mn = 34 kDa and Mw = 43 kDa were obtained. 1H NMR (300 MHz, CDCl3, 7.26 ppm): δ = 7.55 (d, J = 8.2 Hz, 1 H), 7.37 (br., 1 H), 7.15 (d, J = 8.0 Hz, 1 H), 6.85 (br., 1 H), 6.67 (br., 1 H), 3.40–2.60 (m, 8 H), 1.75–1.20 (m, 12 H), 0.92 (br., 3 H).
- 25a Wang X, Lane BS, Sames D. J. Am. Chem. Soc. 2005; 127: 4996
- 25b Wang H, Grohmann C, Nimphius C, Glorius F. J. Am. Chem. Soc. 2012; 134: 19592
- 25c Zhang H, Wang K, Wang B, Yi H, Hu F, Li C, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2014; 53: 13234
- 26 Poly[2-((E)-1-(4-((Z)-dodec-1-en-1-yl)phenyl)dodec-1-en-2-yl)-N1,N1,N1′,N1′-tetramethyl-1H,1′H-[6,6′-biindole]-1,1′-dicarboxamide] (3): To a microwave vial, the biindole (0.10 mmol), the dialkyne (0.10 mmol), cesium pivalate (0.01 mmol), and pivalic acid (1.00 mmol) were dissolved in tetrahydrofuran (0.8 mL). To the stirred solution, tris(acetonitrile)pentamethylcyclopentadienylrhodium(III) hexafluoroantimonate (0.01 mmol) was added, the vial was sealed, and the solution was heated to 110 °C in an oil bath. After 22 hours or once the solution became too viscous to stir, the reaction mixture was poured into stirring methanol and the precipitating polymer fibers were collected by vacuum filtration. Polymers with weights of Mn = 23 kDa and Mw = 37 kDa were obtained. 1H NMR (300 MHz, CDCl3, 7.26 ppm): δ = 7.64 (br. m), 7.51 (br. m), 7.36 (br. s), 6.76 (br. s), 6.71 (br. s), 3.30–2.60 (br.), 1.70–1.35 (br.), 1.26 (br. s), 0.90–0.80 (br. m)