RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2018; 29(17): 2275-2278
DOI: 10.1055/s-0037-1610980
DOI: 10.1055/s-0037-1610980
letter
Dehydroxymethyl Bromination of Alkoxybenzyl Alcohols by Using a Hypervalent Iodine Reagent and Lithium Bromide
This work was supported by JSPS KAKENHI Grant Numbers 18K05132 and 15K18840, and also by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2014–2018 (S1411037).Weitere Informationen
Publikationsverlauf
Received: 31. Juli 2018
Accepted after revision: 26. August 2018
Publikationsdatum:
26. September 2018 (online)
Abstract
We describe the dehydroxymethylbromination of alkoxybenzyl alcohol by using a hypervalent iodine reagent and lithium bromide in F3CCH2OH at room temperature. Selective monobromination or dibromination was possible by adjusting the molar ratios of hypervalent iodine reagent and lithium bromide.
Key words
hypervalent iodine reagent - bromination - bromoarenes - benzylic alcohol - regioselectivitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610980.
- Supporting Information
-
References and Notes
- 1a Hunsdiecker H. Hunsdiecker C. Ber. Dtsch. Chem. Ges. B 1942; 75: 291
- 1b Johnson RG. Ingham RK. Chem. Rev. 1956; 56: 219
- 1c Wilson CV. Org. React. (N.Y.) 1957; 9: 332
- 1d Sheldon RA. Kochi JK. Org. React. (N.Y.) 1972; 19: 279
- 1e Crich D. In Comprehensive Organic Synthesis . Vol. 7. Trost BM. Fleming I. Pergamon; Oxford: 1991: 717
- 1f Wang Z. Zhu L. Yin F. Su Z. Li Z. Li C. J. Am. Chem. Soc. 2012; 134: 4258
- 2a Hamamoto H. Umemoto H. Umemoto M. Ohta C. Doshita M. Miki Y. Synlett 2010; 21: 2593
- 2b Hamamoto H. Hattori S. Takemaru K. Miki Y. Synlett 2011; 22: 1563
- 3 Miki Y. Umemoto H. Doshita M. Hamamoto H. Tetrahedron Lett. 2012; 53: 1924
- 4a Stang PJ. Zhdankin VV. Chem. Rev. 1996; 96: 1123
- 4b Zhdankin VV. Stang PJ. Chem. Rev. 2002; 102: 2523
- 4c Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis. Wirth T. Springer; Berlin: 2003
- 4d Tohma H. Kita Y. Adv. Synth. Catal. 2004; 346: 111
- 4e Moriarty RM. J. Org. Chem. 2005; 70: 2893
- 4f Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656
- 4g Zhdankin VV. Stang PJ. Chem. Rev. 2008; 108: 5299
- 4h Ochiai M. Miyamoto K. Eur. J. Org. Chem. 2008; 4229
- 4i Ochiai M. Synlett 2009; 159
- 4j Dohi T. Kita Y. Chem. Commun. 2009; 2073
- 4k Duschek A. Kirsch SF. Angew. Chem. Int. Ed. 2011; 50: 1524
- 4l Merritt EA. Olofsson B. Synthesis 2011; 517
- 4m Silva LF. Jr. Olofsson B. Nat. Prod. Rep. 2011; 28: 1722
- 4n Yoshimura A. Zhdankin VV. Chem. Rev. 2016; 116: 3328
- 4o Li YF. Hari DP. Vita MV. Waser J. Angew. Chem. Int. Ed. 2016; 55: 4436
- 4p Hypervalent Iodine Chemistry . Wirth T. Springer; Berlin: 2016
- 5a Nair V. Panicker SB. Augustine A. George TG. Thomas S. Vairamani M. Tetrahedron 2001; 57: 7417
- 5b Roy SC. Guin C. Rana KK. Maiti G. Tetrahedron Lett. 2001; 42: 6941
- 5c Mo S. Zhu Y. Shen Z. Org. Biomol. Chem. 2013; 11: 2756
- 5d Zhang P. Hong L. Li G. Wang R. Adv. Synth. Catal. 2015; 357: 345
- 5e Xu J. Zhu X. Zhou G. Ying B. Ye P. Su L. Shen C. Zhang P. Org. Biomol. Chem. 2016; 14: 3016
- 6a Dieter RK. Nice LE. Velu SE. Tetrahedron Lett. 1996; 37: 2377
- 6b Subbarayappa A. Ghosh S. Patoliya PU. Ramanshandraiah G. Agrawal M. Gandhi MR. Upadhyay SC. Ghosh PK. Ranu BC. Green Chem. 2008; 10: 232
- 6c Wang G.-W. Gao J. Green Chem. 2012; 14: 1125
- 7a Rousseau G. Robin S. Tetrahedron Lett. 2000; 41: 8881
- 7b Koo B.-S. Lee CK. Lee K.-J. Synth. Commun. 2002; 32: 2115
- 7c Lee CK. Koo B.-S. Lee YS. Cho HK. Lee K.-J. Bull. Korean Chem. Soc. 2002; 23: 1667
- 7d Adimurthy S. Patoliya PU. Synth. Commun. 2007; 37: 1571
- 8 Tohma H. Maegawa T. Takizawa S. Kita Y. Adv. Synth. Catal. 2002; 344: 328
- 9 1-Bromo-2-methoxybenzene (2a) (see Ref. 10); Typical Procedure LiBr·H2O (0.2 mmol) and PhI(OAc)2 (0.2 mmol) were added to a solution of 4-methoxybenzyl alcohol (1a; 0.2 mmol) in F3CCH2OH (1 mL) at r.t. When the reaction was complete (TLC), sat. aq Na2SO3 was added and the mixture was extracted with CH2Cl2. The combined organic layers were washed with brine, dried (Na2SO4), and concentrated in vacuo. The residue was purified by column chromatography (silica gel) to give a yellow oil; yield: 34.1 mg (91%); 1H NMR (CDCl3): δ = 3.79 (s, 3 H), 6.79 (dd, J = 2.0, 8.6 Hz, 2 H), 7.38 (dd, J = 2.0, 8.6 Hz, 2 H).
- 10 Braddock DC. Cansell G. Hermitage SA. Synlett 2004; 461
For recent reviews, see: