RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2019; 30(05): 557-562
DOI: 10.1055/s-0037-1611701
DOI: 10.1055/s-0037-1611701
letter
Desymmetrization of σ-Symmetric Biphenyl-2,6-diyl Diacetate Derivatives by Lipase-Catalyzed Hydrolysis: Unexpected Effect of C(3′)-Substituent on the Enantiotopic Group Selectivity
This work was supported by the Platform for Drug Discovery, Informatics, and Structural Life Science and partly supported by a Private University Research Branding Project from the Ministry of Education, Culture, Sports, Science and Technology, Japan.Weitere Informationen
Publikationsverlauf
Received: 08. November 2018
Accepted after revision: 09. Dezember 2018
Publikationsdatum:
04. Januar 2019 (online)
Abstract
Highly enantioselective desymmetrization of σ-symmetric 3′-substituted 2′,6′-dimethoxybiphenyl-2,6-diyl diacetate derivatives to the corresponding monoacetates was effected by using Rhizopus oryzae lipase (ROL) and porcine pancreatic lipase (PPL), despite the remoteness of the C(3′) substituent from the acetate groups. ROL promoted hydrolysis of the pro-S acetates, irrespective of the type of C(3′) substituent, whereas PPL promoted hydrolysis of the pro-R acetates, and selectivity was only attainable when the C(3′) substituent was a polar group.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611701.
- Supporting Information
-
References and Notes
- 1a Bringmann G, Günther C, Ochse M, Schupp O, Tasler S. Prog. Chem. Org. Nat. Prod. 2001; 82: 1
- 1b Bringmann G, Mortimer AJ. P, Keller PA, Gresser MJ, Garner J, Breuning M. Angew. Chem. Int. Ed. 2005; 44: 5384
- 2a Wang Y.-B, Tan B. Acc. Chem. Res. 2018; 51: 534
- 2b Loxq P, Manoury E, Poli R, Deydier E, Labande A. Coord. Chem. Rev. 2016; 308: 131
- 2c Wencel-Delord J, Panossian A, Leroux FR, Colobert F. Chem. Soc. Rev. 2015; 44: 3418
- 2d Ma G, Sibi MP. Chem. Eur. J. 2015; 21: 11644
- 3a Matsumoto T, Konegawa T, Nakamura T, Suzuki K. Synlett 2002; 122
- 3b Okuyama K, Shingubara K, Tsujiyama S, Suzuki K, Matsumoto T. Synlett 2009; 941
- 3c Takahashi N, Kanayama T, Okuyama K, Kataoka H, Fukaya H, Suzuki K, Matsumoto T. Chem. Asian J. 2011; 6: 1752
- 3d Yamaguchi S, Takahashi N, Yuyama D, Sakamoto K, Suzuki K, Matsumoto T. Synlett 2016; 27: 1262
- 4a Hayashi T, Niizuma S, Kamikawa T, Suzuki N, Uozumi Y. J. Am. Chem. Soc. 1995; 117: 9101
- 4b Zhou H, Uozumi Y. Synlett 2013; 24: 2550
- 4c Mori K, Ichikawa Y, Kobayashi M, Shibata Y, Yamanaka M, Akiyama T. J. Am. Chem. Soc. 2013; 135: 3964
- 4d Osako T, Uozumi Y. Org. Lett. 2014; 16: 5866
- 4e Staniland S, Yuan B, Giménez-Agulló N, Marcelli T, Willies SC, Grainger DM, Turner NJ, Clayden J. Chem. Eur. J. 2014; 20: 13084
- 4f Armstrong RJ, Smith MD. Angew. Chem. Int. Ed. 2014; 53: 12822
- 4g Mori K, Kobayashi M, Itakura T, Akiyama T. Adv. Synth. Catal. 2015; 357: 35
- 4h Graff J, Łastawiecka W, Guénée L, Leroux F, Alexakis A. Adv. Synth. Catal. 2015; 357: 2833
- 5 For a review on enzymatic approaches for the preparation of optically active noncentrochiral compounds, see: Skrobo B, Rolfes JD, Deska J. Tetrahedron 2016; 72: 1257
- 6 For the preparation, see the Supporting Information.
- 7a Gao J.-M, Qin J.-C, Pescitelli G, Di Pietro S, Ma Y.-T, Zhang A.-L. Org. Biomol. Chem. 2010; 8: 3543
- 7b Gill M, Yu J, Raudies E. Aust. J. Chem. 1999; 52: 989
- 8 The enzymes that we tested were as follows: ROL: Rhizopus oryzae lipase (Amano, Lipase F-AP15), PPL: porcine pancreatic lipase (Sigma, Type II), MJL: Mucor javanicus lipase (Lipase M Amano 10), CRL: Candida rugosa lipase (Lipase AYS Amono), PFL: Pseudomonas fluorescence lipase (Lipase AK Amano), CAL: Candida antarctica lipase, typeB (MIK Pharm Co.), ANL: Aspergillus niger lipase (Lipase AS Amono), PCL: Pseudomonas cepacia lipase (Lipase PS Amono), BCL: Burkholderia cepacia lipase (Lipase PS Amono SD), PCamL: Penicillium camemberti lipase (Lipase G Amono 50), PLE: pig liver esterase (Sigma, esterase from porcine liver lyophilized powder).
- 9 Methyl (R)-2′-(Acetyloxy)-6′-hydroxy-2,6-dimethoxybiphenyl-3-carboxylate [(R)-(+)-5a]; Typical ProcedureTo a solution of 4a (503 mg, 1.30 mmol) in i-Pr2O (12.5 mL) were added 0.1 M pH 7 phosphate buffer (25 mL) and PPL (252 mg). The mixture was vigorously stirred at 35 °C for 2.5 h, then diluted with EtOAc and filtered through a pad of Celite. The filtrate was washed with brine, dried (Na2SO4), and concentrated under reduced pressure. The residue was purified by column chromatography [silica gel, hexane–acetone (7:3)] to give a colorless oil; yield: 447 mg (1.29 mmol, quant; >99% ee); [α]D 25 +40 (c 1.9, CHCl3).IR (neat): 3420, 3010, 2945, 2840, 1765, 1720, 1705, 1588, 1458, 1432, 1405, 1368, 1308, 1278, 1222, 1200, 1152, 1100, 1080, 1050, 1025, 970 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.95 (s, 3 H), 3.54 (s, 3 H), 3.79 (s, 3 H), 3.90 (s, 3 H), 5.62 (s, 1 H), 6.81 (d, J = 8.8 Hz, 1 H), 6.82 (dd, J = 8.0, 0.8 Hz, 1 H), 6.93 (dd, J = 8.4, 0.8 Hz, 1 H), 7.31 (dd, J = 8.4, 8.0 Hz, 1 H), 7.96 (d, J = 8.8 Hz, 1 H).13C NMR (100 MHz, CDCl3): δ = 20.7, 52.1, 56.1, 62.1, 106.6, 114.3, 114.4, 114.9, 115.9, 117.5, 129.4, 133.7, 149.4, 154.7, 159.5, 161.6, 166.0, 168.7. HRMS (ESI-TOF): m/z [M + Na]+ calcd for C18H18NaO7: 369.0950; found: 369.0958. HPLC [CHIRALPAK IA (Daicel), 0.46 × 25 cm, hexane–2-propanol (9:1), 1.0 mL/min, 20 °C, 254 nm]: t R = 26.2 min [21.2 min for (S)-(–)-5a]
- 10 The yields refer to the chromatographically isolated pure products. Because each of the reactions was stopped at the time when the diol was detected by TLC monitoring, the yield of the monoacetate is approximately equal to the conversion (%) of the reaction. Moreover, the ee value virtually reflects the true selectivity that is not amplified by kinetic resolution of the monoacetate enantiomers.
- 11 The stereochemistries of monoacetates 5a–g were determined by correlation with stereodefined reference samples (S)-9–(S)-14, prepared from the iodobiphenyl (S)-7 (Scheme 8). See reference 12 and the Supporting Information.
- 12 The reactions of 3′-iodo derivative 4h were not sufficiently enantioselective. The use of ROL [pH 7 phosphate buffer–i-Pr2O, 35 °C; 25% conversion of 4h] gave an 80:20-mixture of monoacetate (+)-5h and diol 6h, where the ee of (+)-5h was 87%. The use of PPL [pH 7 phosphate buffer–i-Pr2O, 35 °C; 60% conversion of 4h] gave an 85:15-mixture of (–)-5h and 6h, where the ee of (–)-5h was 92%. However, enrichment of the ee through overhydrolysis to the diol 6h allowed us to obtain a 95% ee sample of (–)-5h at the cost of lowering the chemical yield, as shown in Scheme 9. The absolute stereochemistry of (–)-5h was determined to be R by X-ray analysis of the crystalline derivative (S)-7 (99% ee after repeated recrystallization; see ref. 15), which was then converted into compounds (S)-9–(S)-14 with definite configurations.
- 13 See ref. 10 for the yields of (S)-5a–(S)-5e (by the reactions with ROL) and of (R)-5a, (R)-5b (by the reaction with PPL). In the reactions of 4c–e with PPL, the monoacetates underwent overhydrolysis just as they were formed, so that they were obtained in only trace amounts irrespective of the reaction period and conditions.
- 14 (R)-3′-Acetyl-6-hydroxy-2′,6′-dimethoxybiphenyl-2-yl Acetate [(R)-(–)-5b]Colorless oil; yield: 89 mg (92%; >99% ee); [α]D 25 –1 (c 1.9, CHCl3). IR (neat): 3405, 3010, 2940, 2840, 1765, 1660, 1582, 1458, 1400, 1360, 1275, 1200, 1135, 1090, 1025, 970 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.97 (s, 3 H), 2.63 (s, 3 H), 3.46 (s, 3 H), 3.82 (s, 3 H), 5.36 (s, 1 H), 6.84 (d, J = 8.8 Hz, 1 H), 6.85 (d, J = 8.0 Hz, 1 H), 6.96 (d, J = 8.4 Hz, 1 H), 7.34 (dd, J = 8.4, 8.0 Hz, 1 H), 7.88 (d, J = 8.8 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 20.7, 30.8, 56.3, 61.8, 107.0, 114.2, 114.4, 114.5, 115.2, 126.0, 129.6, 132.7, 149.4, 154.6, 159.7, 161.7, 168.6, 198.2. HRMS (ESI-TOF): m/z [M + Na]+ calcd for C18H18NaO6: 353.1001; found, 353.0989. HPLC [CHIRALPAK IA (Daicel), 0.46 × 25 cm, hexane–2-propanol (8:2), 1.0 mL/min, 20 °C, 294 nm]: t R = 10.2 min [8.0 min for (S)-(+)-5b].(S)-6-Hydroxy-3′-isopropyl-2′,6′-dimethoxybiphenyl-2-yl Acetate [(S)-(+)-5c]Colorless oil; yield: 74 mg (83%; >99% ee); [α]D 25 +13 (c 1.2, CHCl3). IR (neat): 3440, 2960, 2930, 2870, 2830, 1765, 1740, 1592, 1480, 1458, 1438, 1410, 1365, 1275, 1200, 1098, 1025 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.24 (d, J = 6.8 Hz, 6 H), 1.95 (s, 3 H), 3.28 (sept, J = 6.8 Hz, 1 H), 3.35 (s, 3 H), 3.75 (s, 3 H), 5.62 (s, 1 H), 6.78 (d, J = 8.8 Hz, 1 H), 6.83 (dd, J = 8.4, 0.8 Hz, 1 H), 6.94 (dd, J = 8.0, 0.8 Hz, 1 H), 7.28 (d, J = 8.8 Hz, 1 H), 7.30 (dd, J = 8.4, 8.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 20.8, 23.6, 23.8, 26.6, 56.1, 61.3, 107.3, 113.7, 114.1, 115.0, 115.7, 127.5, 129.0, 134.6, 149.3, 154.6, 155.9, 156.6, 168.8. HRMS (ESI-TOF): m/z [M + Na]+ calcd for C19H22NaO5: 353.1365; found, 353.1361. HPLC [CHIRALPAK IA (Daicel), 0.46 × 25 cm, hexane–2-propanol (9:1), 1.0 mL/min, 20 °C, 275 nm]: t R = 7.2 min [16.0 min for (R)-(–)-5c].(S)-3′-Cyclopentyl-6-hydroxy-2′,6′-dimethoxybiphenyl-2-yl Acetate [(S)-(+)-5d]Colorless oil; yield: 73 mg (82%; 99% ee); [α]D 25 +6 (c 1.5, CHCl3). IR (neat): 3440, 2950, 2870, 2830, 1765, 1740, 1595, 1580, 1480, 1460, 1438, 1412, 1365, 1272, 1202, 1100, 1082, 1025 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.49–1.87 (m, 6 H), 1.96 (s, 3 H), 1.99–2.08 (m 2 H), 3.26–3.32 (m, 1 H), 3.35 (s, 3 H), 3.74 (s, 3 H), 5.66 (s, 1 H), 6.77 (d, J = 8.8 Hz, 1 H), 6.83 (dd, J = 8.0, 1.2 Hz, 1 H), 6.94 (dd, J = 8.0, 1.2 Hz, 1 H), 7.29 (d, J = 8.8 Hz, 1 H), 7.30 (dd, J = 8.0, 8.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 20.8, 25.51, 25.55, 34.2, 34.5, 38.4, 56.1, 61.3, 107.2, 113.6, 114.1, 115.0, 115.6, 128.1, 129.0, 132.1, 149.3, 154.6, 155.9, 157.2, 168.8. ; HRMS (ESI-TOF): m/z [M + Na]+ calcd for C21H24NaO5: 379.1521; found, 379.1518; HPLC [CHIRALPAK IA (Daicel), 0.46 × 25 cm, hexane–2-propanol (8:2), 1.0 mL/min, 20 °C, 274 nm]: t R = 5.6 min [8.8 min for (R)-(–)-5d].(S)-3′-Cyclopent-1-en-1-yl-6-hydroxy-2′,6′-dimethoxybiphenyl-2-yl Acetate [(S)-(+)-5e]Colorless oil; yield: 87 mg (92%; >99% ee); [α]D 25 +12 (c 1.4, CHCl3). IR (neat): 3440, 3010, 2940, 2840, 1765, 1740, 1590, 1580, 1560, 1438, 1402, 1285, 1205, 1120, 1085, 1025 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.97 (s, 3 H), 1.97 (quin, J = 7.2 Hz, 2 H), 2.50–2.55 (m, 2 H), 2.72–2.76 (m, 2 H), 3.35 (s, 3 H), 3.75 (s, 3 H), 5.58 (s, 1 H), 6.26–6.28 (m, 1 H), 6.76 (d, J = 8.8 Hz, 1 H), 6.83 (dd, J = 8.0, 1.2 Hz, 1 H), 6.94 (dd, J = 8.0, 1.2 Hz, 1 H), 7.31 (dd, J = 8.0, 8.0 Hz, 1 H), 7.34 (d, J = 8.8 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 20.8, 23.1, 33.7, 35.3, 56.1, 60.2, 106.8, 114.1, 114.5, 115.0, 115.3, 124.4, 129.06, 129.11, 130.0, 138.7, 149.3, 154.6, 156.8, 157.0, 168.8. HRMS (ESI-TOF): m/z [M + Na]+ calcd for C21H22NaO5: 377.1365; found, 377.1371. HPLC [CHIRALPAK® IA (Daicel), 0.46 × 25 cm, hexane–2-propanol (8:2), 1.0 mL/min, 20 °C, 274 nm]: t R = 6.0 min [7.5 min for (R)-(–)-5e].(R)-3′-(2-Furyl)-6-hydroxy-2′,6′-dimethoxybiphenyl-2-yl Acetate [(R)-(–)-5f]Colorless oil; yield: 73 mg (89%; >99% ee); [α]D 25 –35 (c 2.1, CHCl3). IR (neat): 3446, 2937, 2838, 1764, 1736, 1586, 1457, 1435, 1416, 1367, 1276, 1197, 1084, 1021, 1003 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.97 (s, 3 H), 3.40 (s, 3 H), 3.81 (s, 3 H), 5.50 (s, 1 H), 6.49 (dd, J = 3.6, 1.6 Hz, 1 H), 6.84 (dd, J = 3.6, 0.8 Hz, 1 H), 6.86 (dd, J = 8.0, 0.8 Hz, 1 H), 6.88 (d, J = 8.8 Hz, 1 H), 6.97 (dd, J = 8.0, 0.8 Hz, 1 H), 7.34 (dd, J = 8.0, 8.0 Hz, 1 H), 7.47 (dd, J = 1.6, 0.8 Hz, 1 H), 7.88 (d, J = 8.8 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 20.8, 56.2, 60.2, 107.5, 108.2, 111.9, 114.2, 114.7, 114.8, 115.2, 118.3, 127.6, 129.3, 141.1, 149.3, 149.8, 154.6, 155.3, 157.3, 168.8. HRMS (ESI-TOF): m/z [M + Na]+ calcd for C20H18NaO6: 377.1001; found, 377.0991. HPLC [CHIRALPAK IA (Daicel), 0.46 × 25 cm, hexane–2-propanol (8:2), 1.0 mL/min, 20 °C, 305 nm]: t R = 9.9 min [7.4 min for (S)-(+)-5f].(R)-6-Hydroxy-2′,6′-dimethoxy-3′-(2-thienyl)biphenyl-2-yl Acetate [(R)-(–)-5g]Colorless oil; yield: 77 mg (89%; >99% ee); [α]D 25 –44 (c 1.5, CHCl3). IR (neat): 3428, 2934, 2836, 1763, 1734, 1591, 1457, 1405, 1367, 1277, 1195, 1112, 1084, 1022 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.00 (s, 3 H), 3.35 (s, 3 H), 3.80 (s, 3 H), 5.52 (s, 1 H), 6.85 (d, J = 8.8 Hz, 1 H), 6.87 (dd, J = 8.0, 1.2 Hz, 1 H), 6.96 (dd, J = 8.4, 1.2 Hz, 1 H), 7.08 (dd, J = 5.2, 3.6 Hz, 1 H), 7.31 (dd, J = 5.2, 1.2 Hz, 1 H), 7.34 (dd, J = 8.4, 8.0 Hz, 1 H), 7.41 (dd, J = 3.6, 1.2 Hz, 1 H), 7.70 (d, J = 8.8 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 20.9, 56.2, 60.6, 107.6, 114.2, 114.8, 114.9, 115.2, 121.4, 124.5, 125.4, 126.9, 129.3, 129.8, 138.7, 149.3, 154.6, 155.6, 157.3, 168.8. HRMS (ESI-TOF): m/z [M + Na]+ calcd for C20H18NaO5S: 393.0773; found, 393.0773. HPLC [CHIRALPAK IA (Daicel), 0.46 × 25 cm, hexane–2-propanol (8:2), 1.0 mL/min, 20 °C, 305 nm]: t R = 12.0 min [8.5 min for (S)-(+)-5g].
- 15 CCDC 1817942 contains the supplementary crystallographic data for compound (S)-7. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
For leading reviews, see:
For recent reviews, see:
For applications in natural product synthesis, see:
For other examples of the enantioselective synthesis of axially chiral biaryls by desymmetrization, see: