Subscribe to RSS
DOI: 10.1055/s-0037-1611728
Deoxygenative Transformation of Carbonyl and Carboxyl Compounds Using gem-Diborylalkanes
This work was supported by the National Natural Science Foundation of China (Grant no. 91745110, 21673261, 21603245, 21633013, 21703265, 21872156 and 21802150), Natural Science Foundation of Jiangsu Province (Grant no. BK20181194, BK20180247), and a start-up funding from LICP. Support from the Young Elite Scientist Sponsorship Program by CAST, the Youth Innovation Promotion Association CAS (2018458).
Publication History
Received: 10 January 2019
Accepted after revision: 23 January 2019
Publication Date:
21 February 2019 (online)
Abstract
gem-Diborylalkanes serve as privileged carbanion precursors for the efficient construction of carbon–carbon bond with various carbonyl and carboxyl compounds. We highlight the recent advances on deoxygenative transformation of carbonyl and carboxyl compounds using gem-diborylalkanes reagents. Our recent development of a dual functionalization of gem-diborylalkanes through deoxygenative enolization with the carboxylic acids is also discussed.
1 Introduction
2 Activation Modes of gem-Diborylalkanes
3 Deoxygenative Transformation of Carbonyl and Carboxyl Compounds via α-Diboryl Carbanion
3.1 Reaction with Aldehyde and Ketone Electrophiles
3.2 Reaction with Carboxylic Acid Derivatives
4 Deoxygenative Transformation of Carbonyl and Carboxyl Compounds via α-Monoboryl Carbanion
5 Conclusion
-
References
- 1a Lombardo M, Trombini C. Chem. Rev. 2007; 107: 3843
- 1b Takaya H, Ito M, Murahashi S. J. Am. Chem. Soc. 2009; 131: 10824
- 1c Huang X, Maulide N. J. Am. Chem. Soc. 2011; 133: 8510
- 1d Wang X, Meng F, Wang Y, Han Z, Chen YJ, Liu L, Wang Z, Ding K. Angew. Chem. Int. Ed. 2012; 51: 9276
- 1e Byrne PA, Gilheany DG. Chem. Soc. Rev. 2013; 42: 6670
- 1f Noda H, Eros G, Bode JW. J. Am. Chem. Soc. 2014; 136: 5611
- 1g Li C, Jin T, Zhang X, Li C, Jia X, Li J. Org. Lett. 2016; 18: 1916
- 1h Milnes KK, Pavelka LC, Baines KM. Chem. Soc. Rev. 2016; 45: 1019
- 1i Tona V, de la Torre A, Padmanaban M, Ruider S, Gonzalez L, Maulide N. J. Am. Chem. Soc. 2016; 138: 8348
- 1j Bartolo ND, Woerpel KA. J. Org. Chem. 2018; 83: 10197
- 2a Kiss G. Chem. Rev. 2001; 101: 3435
- 2b Hermange P, Lindhardt AT, Taaning RH, Bjerglund K, Lupp D, Skrydstrup T. J. Am. Chem. Soc. 2011; 133: 6061
- 2c Wu XF, Neumann H, Beller M. Chem. Soc. Rev. 2011; 40: 4986
- 2d Leighty MW, Shen B, Johnston JN. J. Am. Chem. Soc. 2012; 134: 15233
- 2e Wu XF, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
- 2f Wu XF, Fang X, Wu L, Jackstell R, Neumann H, Beller M. Acc. Chem. Res. 2014; 47: 1041
- 2g Urgoitia G, SanMartin R, Herrero MT, Domínguez E. ACS Catal. 2017; 7: 3050
- 2h Riemer D, Mandaviya B, Schilling W, Götz AC, Kühl T, Finger M, Das S. ACS Catal. 2018; 8: 3030
- 3a Abu Ali H, Goldberg I, Srebnik M. Organometallics 2001; 20: 3962
- 3b Abu Ali H, Goldberg I, Kaufmann D, Burmeister C, Srebnik M. Organometallics 2002; 21: 1870
- 3c Dembitsky VM, Abu Ali H, Srebnik M. Appl. Organomet. Chem. 2003; 17: 327
- 3d Shibata T, Endo K, Hirokami M. Synlett 2009; 1331
- 3e Lee JC, McDonald R, Hall DG. Nat. Chem. 2011; 3: 894
- 3f Feng X, Jeon H, Yun J. Angew. Chem. Int. Ed. 2013; 52: 3989
- 3g Cho SH, Hartwig JF. Chem. Sci. 2014; 5: 694
- 3h Lee S, Li D, Yun J. Chem. Asian. J. 2014; 9: 2440
- 3i Li H, Shangguan X, Zhang Z, Huang S, Zhang Y, Wang J. Org. Lett. 2014; 16: 448
- 3j Atack TC, Cook SP. J. Am. Chem. Soc. 2016; 138: 6139
- 3k Palmer WN, Obligacion JV, Pappas I, Chirik PJ. J. Am. Chem. Soc. 2016; 138: 766
- 3l Zuo Z, Huang Z. Org. Chem. Front. 2016; 3: 434
- 3m Li L, Gong T, Lu X, Xiao B, Fu Y. Nat. Commun. 2017; 8: 345
- 3n Palmer WN, Zarate C, Chirik PJ. J. Am. Chem. Soc. 2017; 139: 2589
- 3o Wang L, Zhang T, Sun W, He Z, Xia C, Lan Y, Liu C. J. Am. Chem. Soc. 2017; 139: 5257
- 4a Nallagonda R, Padala K, Masarwa A. Org. Biomol. Chem. 2018; 16: 1050
- 4b Miralles N, Maza RJ, Fernández E. Adv. Synth. Catal. 2018; 360: 1306
- 4c Wu C, Wang J. Tetrahedron Lett. 2018; 59: 2128
- 5a Matteson DS, Moody RJ, Jesthi PK. J. Am. Chem. Soc. 1975; 97: 5608
- 5b Matteson DS, Jesthi PK. J. Organomet. Chem. 1976; 110: 25
- 5c Matteson DS, Moody RJ. J. Am. Chem. Soc. 1977; 99: 3196
- 6a Endo K, Hirokami M, Shibata T. J. Org. Chem. 2010; 75: 3469
- 6b Endo K, Sakamoto A, Ohkubo T, Shibata T. Chem. Lett. 2011; 40: 1440
- 7 Coombs JR, Zhang L, Morken JP. Org. Lett. 2015; 17: 1708
- 8 Stephens TC, Pattison G. Org. Lett. 2017; 19: 3498
- 9 Matteson DS, Moody RJ. Organometallics 1982; 1: 20
- 10 Iacono CE, Stephens TC, Rajan TS, Pattison G. J. Am. Chem. Soc. 2018; 140: 2036
- 11 Mukaiyama T, Murakami M, Oriyama T, Yamaguchi M. Chem. Lett. 1981; 10: 1193
- 12 Zhao H, Tong M, Wang H, Xu S. Org. Biomol. Chem. 2017; 15: 3418
- 13 Sun W, Wang L, Xia C, Liu C. Angew. Chem. Int. Ed. 2018; 57: 5501
- 14 Nahm S, Weinreb SM. Tetrahedron Lett. 1981; 22: 3815
- 15 Kürti L, Czakó B. In Strategic Applications of Named Reactions in Organic Synthesis . Elsevier Academic Press; Cambridge, MA: 2005: 478
- 16 Brown HC, Rhodes SP. J. Am. Chem. Soc. 1969; 91: 4306
- 17 Nielsen DU, Lescot C, Gogsig TM, Lindhardt AT, Skrydstrup T. Chem. Eur. J. 2013; 19: 17926
- 18 Stol M, Snelders DJ. M, Godbole MD, Havenith RW. A, Haddleton D, Clarkson G, Lutz M, Spek AL, van Klink GP. M, van Koten G. Organometallics 2007; 26: 3985