Subscribe to RSS
DOI: 10.1055/s-0037-1611890
Recent Progress in Equilibrium Acidity Studies of Organocatalysts
This work was supported by the Natural Science Foundation of China (21772098, 21390400, 21602116), and Tsinghua University Initiative Scientific Research Program (20131080083, 20141081295).Publication History
Received: 23 May 2019
Accepted after revision: 26 June 2019
Publication Date:
10 July 2019 (online)
Dedicated to the 100th anniversary of Nankai University
Abstract
This account summarizes our recent work on the pK a scales of some frequently used organocatalysts, especially those of hydrogen-bond-donor catalysts and stronger Brønsted acid catalysts. Most of these pK a values were obtained by the Bordwell overlapping indicator method, which is known to provide high accuracy. Linear free-energy relationships associated with pK a values are discussed in relation to understanding of reaction mechanisms.
1 Introduction
2 Single Hydrogen-Bonding Donors
2.1 Proline-Type Organocatalysts
2.2 Cinchona Alkaloids Bearing a Hydrogen-Bonding Donor in the 6′-Position
3 Double-Hydrogen-Bonding Donors
3.1 Thioureas
3.2 Squaramides
3.3 BINOLs
4 Stronger Brønsted Acids
5 N-Heterocyclic Carbenes
6 Summary and Outlook
-
References
- 1a Schreiner PR. Chem. Soc. Rev. 2003; 32: 289
- 1b Akiyama T. Chem. Rev. 2007; 107: 5744
- 1c Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
- 1d Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
- 1e Erkkilä A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416
- 1f Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
- 1g Wurz RP. Chem. Rev. 2007; 107: 5570
- 1h Zhang Z, Schreiner PR. Chem. Soc. Rev. 2009; 38: 1187
- 1i Akiyama T, Mori K. Chem. Rev. 2015; 115: 9277
- 1j Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
- 1k James T, van Gemmeren M, List B. Chem. Rev. 2015; 115: 9388
- 2 Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165
- 3a Taft RW. J. Am. Chem. Soc. 1952; 74: 2729
- 3b Taft RW. J. Am. Chem. Soc. 1952; 74: 3120
- 3c Taft RW. J. Am. Chem. Soc. 1953; 75: 4538
- 4 Charton M. J. Am. Chem. Soc. 1975; 97: 1552
- 5 Jensen KH, Sigman MS. Angew. Chem. Int. Ed. 2007; 46: 4748
- 6a Harper KC, Sigman MS. Science 2011; 333: 1875
- 6b Harper KC, Bess EN, Sigman MS. Nat. Chem. 2012; 4: 366
- 7a Jacobsen EN, Zhang W, Guler ML. J. Am. Chem. Soc. 1991; 113: 6703
- 7b Santiago CB, Guo J.-Y, Sigman MS. Chem. Sci. 2018; 9: 2398
- 8 Yang C, Zhang E.-G, Li X, Cheng J.-P. Angew. Chem. Int. Ed. 2016; 55: 6506
- 9a Gilli P, Pretto L, Gilli G. J. Mol. Struct. 2007; 844–845: 328
- 9b Gilli G, Gilli P. The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory. Oxford University Press; Oxford: 2009
- 9c Gilli P, Pretto L, Bertolasi V, Gilli G. Acc. Chem. Res. 2009; 42: 33
- 10 Matthews WS, Bares JE, Bartmess JE, Bordwell FG, Cornforth FJ, Drucker GE, Margolin Z, McCallum RJ, McCollum GJ, Vanier NR. J. Am. Chem. Soc. 1975; 97: 7006
- 11a Jakab G, Tancon C, Zhang Z, Lippert KM, Schreiner PR. Org. Lett. 2012; 14: 1724
- 11b Dunn MH, Konstandaras N, Cole ML, Harper JB. J. Org. Chem. 2017; 82: 7324
- 11c Rombola M, Sumaria CS, Montgomery TD, Rawal VH. J. Am. Chem. Soc. 2017; 139: 5297
- 12a Ho J, Coote ML. Theor. Chem. Acc. 2009; 125: 3
- 12b Ho J, Coote ML. J. Chem. Theory Comput. 2009; 5: 295
- 12c Ho J, Coote ML, Franco-Pérez M, Gómez-Balderas R. J. Phys. Chem. A 2010; 114: 11992
- 12d Zhang S, Baker J, Pulay P. J. Phys. Chem. A 2010; 114: 432
- 12e Ho J, Coote ML. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011; 1: 649
- 12f Marenich AV, Ding W, Cramer CJ, Truhlar DG. J. Phys. Chem. Lett. 2012; 3: 1437
- 12g Sharma I, Kaminski GA. J. Comput. Chem. 2012; 33: 2388
- 12h Zhang S. J. Comput. Chem. 2012; 33: 517
- 13 List B, Lerner RA, Barbas CF. J. Am. Chem. Soc. 2000; 122: 2395
- 14a List B, Hoang L, Bahmanyar S, Houk KN, List B. J. Am. Chem. Soc. 2002; 125: 16
- 14b Houk KN, Allemann C, Gordillo R, Clemente FR, Cheong PH.-Y, Houk KN. Acc. Chem. Res. 2004; 37: 558
- 14c Saito S, Yamamoto H. Acc. Chem. Res. 2004; 37: 570
- 14d Nielsen M, Worgull D, Zweifel T, Gschwend B, Bertelsen S, Jørgensen KA. Chem. Commun. 2011; 47: 632
- 15 Torii H, Nakadai M, Ishihara K, Saito S, Yamamoto H, Yamamoto H. Angew. Chem. Int. Ed. 2004; 43: 1983
- 16 Gong L.-Z, Tang Z, Yang Z.-H, Chen X.-H, Cun L.-F, Mi A.-Q, Jiang Y.-Z, Gong L.-Z. J. Am. Chem. Soc. 2005; 127: 9285
- 17 Li Z, Li X, Ni X, Cheng J.-P. Org. Lett. 2015; 17: 1196
- 18a Zhou Y, Shan Z. J. Org. Chem. 2006; 71: 9510
- 18b Reis Ö, Eymur S, Reis B, Demir AS. Chem. Commun. 2009; 1088
- 18c El-Hamdouni N, Companyó X, Rios R, Moyano A. Chem. Eur. J. 2010; 16: 1142
- 18d Martínez-Castañeda Á, Poladura B, Rodríguez-Solla H, Concellón C, del Amo V. Org. Lett. 2011; 13: 3032
- 18e Martínez-Castañeda Á, Rodríguez-Solla H, Concellón C, del Amo V. J. Org. Chem. 2012; 77: 10375
- 18f Martínez-Castañeda Á, Poladura B, Rodríguez-Solla H, Concellón C, del Amo V. Chem. Eur. J. 2012; 18: 5188
- 19 Xue X.-S, Yang C, Li X, Cheng J.-P. J. Org. Chem. 2014; 79: 1166
- 20 Iwabuchi Y, Nakatani M, Yokoyama N, Hatakeyama S. J. Am. Chem. Soc. 1999; 121: 10219
- 21a Marcelli T, van Maarseveen JH, Hiemstra H. Angew. Chem. Int. Ed. 2006; 45: 7496
- 21b Chauhan P, Chimni SS. RSC Adv. 2012; 2: 737
- 22a Li H, Wang Y, Tang L, Wu F, Liu X, Guo C, Foxman BM, Deng L. Angew. Chem. Int. Ed. 2005; 44: 105
- 22b Brandes S, Bella M, Kjærsgaard A, Jørgensen KA. Angew. Chem. Int. Ed. 2006; 45: 1147
- 22c Li H, Wang B, Deng L. J. Am. Chem. Soc. 2006; 128: 732
- 22d Wang Y, Li H, Wang Y.-Q, Liu Y, Foxman BM, Deng L. J. Am. Chem. Soc. 2007; 129: 6364
- 22e Li L, Ganesh M, Seidel D. J. Am. Chem. Soc. 2009; 131: 11648
- 22f Liu Y.-L, Wang B.-L, Cao J.-J, Chen L, Zhang Y.-X, Wang C, Zhou J. J. Am. Chem. Soc. 2010; 132: 15176
- 22g Denis J.-B, Masson G, Retailleau P, Zhu J. Angew. Chem. Int. Ed. 2011; 50: 5356
- 22h Wu Y, Singh RP, Deng L. J. Am. Chem. Soc. 2011; 133: 12458
- 22i Xiao X, Xie Y, Su C, Liu M, Shi Y. J. Am. Chem. Soc. 2011; 133: 12914
- 22j Buyck T, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2013; 52: 12714
- 22k Xue X.-S, Li X, Yu A, Yang C, Song C, Cheng J.-P. J. Am. Chem. Soc. 2013; 135: 7462
- 22l Corbett MT, Johnson JS. Angew. Chem. Int. Ed. 2014; 53: 255
- 22m Zheng P.-F, Ouyang Q, Niu S.-L, Shuai L, Yuan Y, Jiang K, Liu T.-Y, Chen Y.-C. J. Am. Chem. Soc. 2015; 137: 9390
- 23 Ni X, Li X, Cheng J.-P. Org. Chem. Front. 2016; 3: 170
- 24a Sigman MS, Jacobsen EN. J. Am. Chem. Soc. 1998; 120: 4901
- 24b Raheem IT, Thiara PS, Peterson EA, Jacobsen EN. J. Am. Chem. Soc. 2007; 129: 13404
- 24c Fang Y.-Q, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 5660
- 24d Reisman SE, Doyle AG, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 7198
- 25a Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
- 25b Hoashi Y, Yabuta T, Takemoto Y. Tetrahedron Lett. 2004; 45: 9185
- 25c Okino T, Nakamura S, Furukawa T, Takemoto Y. Org. Lett. 2004; 6: 625
- 25d Okino T, Hoashi Y, Furukawa T, Xu X, Takemoto Y. J. Am. Chem. Soc. 2005; 127: 119
- 25e Hoashi Y, Yabuta T, Yuan P, Miyabe H, Takemoto Y. Tetrahedron 2006; 62: 365
- 25f Inokuma T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2006; 128: 9413
- 26a McCooey SH, Connon SJ. Angew. Chem. Int. Ed. 2005; 44: 6367
- 26b Song J, Wang Y, Deng L. J. Am. Chem. Soc. 2006; 128: 6048
- 26c Wang J, Li H, Zu L, Jiang W, Xie H, Duan W, Wang W. J. Am. Chem. Soc. 2006; 128: 12652
- 26d Wang Y.-Q, Song J, Hong R, Li H, Deng L. J. Am. Chem. Soc. 2006; 128: 8156
- 26e Wang J, Xie H, Li H, Zu L, Wang W. Angew. Chem. Int. Ed. 2008; 47: 4177
- 27a Huang H, Jacobsen EN. J. Am. Chem. Soc. 2006; 128: 7170
- 27b Lalonde MP, Chen Y, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 6366
- 27c Liu K, Cui H.-F, Nie J, Dong K.-Y, Li X.-J, Ma J.-A. Org. Lett. 2007; 9: 923
- 27d Tsogoeva SB, Wei S, Freund M, Mauksch M. Angew. Chem. Int. Ed. 2009; 48: 590
- 28a Hamza A, Schubert G, Soós T, Pápai I. J. Am. Chem. Soc. 2006; 128: 13151
- 28b Zuend SJ, Jacobsen EN. J. Am. Chem. Soc. 2007; 129: 15872
- 28c Yalalov DA, Tsogoeva SB, Shubina TE, Martynova IM, Clark T. Angew. Chem. Int. Ed. 2008; 47: 6624
- 29 Li X, Deng H, Zhang B, Li J, Zhang L, Luo S, Cheng J.-P. Chem. Eur. J. 2010; 16: 450
- 30 Li X, Zhang B, Xi Z.-G, Luo S, Cheng J.-P. Adv. Synth. Catal. 2010; 352: 416
- 31a Li X, Luo S, Cheng J.-P. Chem. Eur. J. 2010; 16: 14290
- 31b Li X, Xi Z, Luo S, Cheng J.-P. Adv. Synth. Catal. 2010; 352: 1097
- 31c Li S, Zhang E, Feng J, Li X. Org. Chem. Front. 2017; 4: 2301
- 32 Malerich JP, Hagihara K, Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416
- 33a Qian Y, Ma G, Lv A, Zhu H.-L, Zhao J, Rawal VH. Chem. Commun. 2010; 46: 3004
- 33b Storer RI, Aciro C, Jones LH. Chem. Soc. Rev. 2011; 40: 2330
- 33c Song H.-L, Yuan K, Wu X.-Y. Chem. Commun. 2011; 47: 1012
- 33d Albrecht Ł, Dickmeiss G, Cruz Acosta F, Rodríguez-Escrich C, Davis RL, Jørgensen KA. J. Am. Chem. Soc. 2012; 134: 2543
- 33e Jiang H, Rodríguez-Escrich C, Johansen TK, Davis RL, Jørgensen KA. Angew. Chem. Int. Ed. 2012; 51: 10271
- 33f Su Y, Ling J.-B, Zhang S, Xu P.-F. J. Org. Chem. 2013; 78: 11053
- 33g Wu L, Wang Y, Song H, Tang L, Zhou Z, Tang C. Adv. Synth. Catal. 2013; 355: 1053
- 33h Yang KS, Nibbs AE, Türkmen YE, Rawal VH. J. Am. Chem. Soc. 2013; 135: 16050
- 33i Sun W, Hong L, Zhu G, Wang Z, Wei X, Ni J, Wang R. Org. Lett. 2014; 16: 544
- 34 Ni X, Li X, Wang Z, Cheng J.-P. Org. Lett. 2014; 16: 1786
- 35a Pu L. Chem. Rev. 1998; 98: 2405
- 35b Chen Y, Yekta S, Yudin AK. Chem. Rev. 2003; 103: 3155
- 35c Pu L. Acc. Chem. Res. 2012; 45: 150
- 35d Pu L. Acc. Chem. Res. 2014; 47: 1523
- 36a McDougal NT, Schaus SE. J. Am. Chem. Soc. 2003; 125: 12094
- 36b Wu TR, Chong JM. J. Am. Chem. Soc. 2005; 127: 3244
- 36c Yu SH, Ferguson MJ, McDonald R, Hall DG. J. Am. Chem. Soc. 2005; 127: 12808
- 36d Lou S, Moquist PN, Schaus SE. J. Am. Chem. Soc. 2006; 128: 12660
- 36e Pellegrinet SC, Goodman JM. J. Am. Chem. Soc. 2006; 128: 3116
- 36f Wu TR, Chong JM. J. Am. Chem. Soc. 2007; 129: 4908
- 36g Barnett DS, Moquist PN, Schaus SE. Angew. Chem. Int. Ed. 2009; 48: 8679
- 36h Le PQ, Nguyen TS, May JA. Org. Lett. 2012; 14: 6104
- 37 Ni X, Li X, Li Z, Cheng J.-P. Org. Chem. Front. 2016; 3: 1154
- 38a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
- 38b Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356
- 38c Nakashima D, Yamamoto H. J. Am. Chem. Soc. 2006; 128: 9626
- 38d Cheon CH, Yamamoto H. J. Am. Chem. Soc. 2008; 130: 9246
- 39a Yang C, Xue X.-S, Jin J.-L, Li X, Cheng J.-P. J. Org. Chem. 2013; 78: 7076
- 39b Yang C, Xue X.-S, Li X, Cheng J.-P. J. Org. Chem. 2014; 79: 4340
- 39c Yang C, Xue X.-S, Jin J.-L, Li X, Cheng J.-P. J. Org. Chem. 2017; 82: 10756
- 40a Grossmann A, Enders D. Angew. Chem. Int. Ed. 2012; 51: 314
- 40b Bode JW. Nat. Chem 2013; 5: 813
- 40c De Sarkar S, Biswas A, Samanta RC, Studer A. Chem. Eur. J. 2013; 19: 4664
- 40d Lupton DW, Ryan SJ, Candish L. Chem. Soc. Rev. 2013; 42: 4906
- 40e Chen X.-Y, Ye S. Synlett 2013; 24: 1614
- 40f Chauhan P, Enders D. Angew. Chem. Int. Ed. 2014; 53: 1485
- 40g Hopkinson MN, Richter C, Schedler M, Glorius F. Nature 2014; 510: 485
- 40h Mahatthananchai J, Bode JW. Acc. Chem. Res. 2014; 47: 696
- 40i Menon RS, Biju AT, Nair V. Chem. Soc. Rev. 2015; 44: 5040
- 40j Menon RS, Biju AT, Nair V. Beilstein J. Org. Chem. 2016; 12: 444
- 40k Wang MH, Scheidt KA. Angew. Chem. Int. Ed. 2016; 55: 14912
- 41a Enders D, Breuer K, Raabe G, Runsink J, Teles JH, Melder J.-P, Ebel K, Brode S. Angew. Chem. Int. Ed. 1995; 34: 1021
- 41b Knight RL, Leeper FJ. J. Chem. Soc., Perkin Trans. 1 1998; 1891
- 42a Rovis T. Chem. Lett. 2008; 37: 2
- 42b Kaeobamrung J, Kozlowski MC, Bode JW. Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 20661
- 42c Mahatthananchai J, Bode JW. Chem. Sci. 2012; 3: 192
- 43 Bordwell FG, Satish AV. J. Am. Chem. Soc. 1991; 113: 985
- 44 Chu Y, Deng H, Cheng J.-P. J. Org. Chem. 2007; 72: 7790
- 45 Li Z, Li X, Cheng J.-P. J. Org. Chem. 2017; 82: 9675
- 46 Internet Bond-Energy Databank (pK a and BDE)–iBonD Home Page. http://ibond.chem.tsinghua.edu.cn or http://ibond.nankai.edu.cn (accessed July 3, 2019). For a detailed introduction to iBonD, see: Mayr H.; ChemistryViews; DOI: 10.1002/chemv.201600113