Synlett 2019; 30(17): 1966-1970
DOI: 10.1055/s-0039-1690297
cluster
© Georg Thieme Verlag Stuttgart · New York

Iodonium-Catalyzed Carbonyl–Olefin Metathesis Reactions

Giulia Oss
,
Thanh Vinh Nguyen
Australian Research Council (Grant No. FT180100260).
Weitere Informationen

Publikationsverlauf

Received: 31. August 2019

Accepted after revision: 27. September 2019

Publikationsdatum:
01. Oktober 2019 (online)


Published as part of the Cluster Metathesis beyond Olefins

This manuscript is dedicated to the memory of the late Professor Dieter Enders, RWTH Aachen, for his great contributions to organic chemistry and academic mentoring.

Abstract

The carbonyl–olefin metathesis reaction has become increasingly important in organic synthesis due to its versatility in functional group interconversion chemistry. Recent developments in the field have identified a number of transition-metal and organic Lewis acids as effective catalysts for this reaction. Herein, we report the use of simple organic compounds such as N-iodosuccinimide or iodine monochloride to catalyze the carbonyl–olefin metathesis process under mild reaction conditions. This work broadens the scope of this chemical transformation to include iodonium sources as simple and practical catalysts.

Supporting Information

 
  • References and Notes

  • 2 Ludwig JR, Schindler CS. Synlett 2017; 28: 1501
  • 7 Ma L, Li W, Xi H, Bai X, Ma E, Yan X, Li Z. Angew. Chem. Int. Ed. 2016; 55: 10410
  • 8 Catti L, Tiefenbacher K. Angew. Chem. Int. Ed. 2018; 57: 14589
  • 9 Tran UP. N, Oss G, Pace DP, Ho J, Nguyen TV. Chem. Sci. 2018; 9: 5145
  • 10 Tran UP. N, Oss G, Breugst M, Detmar E, Pace DP, Liyanto K, Nguyen TV. ACS Catal. 2019; 9: 912
  • 12 See the Supporting Information for more details.
  • 14 These two catalysts did not seem to promote the intermolecular COM reaction as preliminary reactions gave unsatisfactory outcomes.
  • 15 General Procedure A A 4 mL vial was charged with NIS (10 mol%) and a stirring bar. Starting material 1 was added to the vial under ambient atmosphere, along with three drops of DCE, added to help with the stirring of reaction mixture. The vial was closed by a cap, and the mixture was stirred for 24 h at room temperature, unless otherwise specified. Upon completion (as determined by TLC analysis), the crude mixture was directly purified by flash column chromatography, to give the metathesis products. General Procedure B A 4 mL vial was charged with ICl (10 mol%, as a stock solution in DCE) and a stirring bar. Starting material 1 was added to the vial under nitrogen atmosphere. The vial was kept under nitrogen, and the mixture was stirred for 24 h at room temperature, unless otherwise specified. Upon completion (as determined by TLC analysis), the crude mixture was directly purified by flash column chromatography, to give the metathesis products. 2-Methyl-3-(p-tolyl)-1-tosyl-2,5-dihydro-1H-pyrrole (2a) 1H NMR (300 MHz, CDCl3): δ = 7.79 (d, J = 8.3 Hz, 2 H), 7.31 (d, J = 8.0 Hz, 2 H), 7.27–7.06 (m, 4 H), 5.80 (q, J = 2.0 Hz, 1 H), 5.02 (ddddd, J = 9.0, 6.2, 4.1, 3.1, 1.7 Hz, 1 H), 4.30 (q, J = 2.5 Hz, 2 H), 2.38 (d, J = 16.9 Hz, 6 H), 1.50 (d, J = 6.4 Hz, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 143.4, 143.2, 138.1, 135.1, 130.1, 129.8, 129.4, 127.3, 126.3, 117.9, 63.0, 54.8, 22.1, 21.5, 21.2 ppm. 3-(p-Tolyl)-1-tosyl-2,5-dihydro-1H-pyrrole (2b) 1H NMR (400 MHz, CDCl3): δ = 7.76 (d, J = 8.2 Hz, 2H), 7.35–7.26 (m, 7 H), 5.83–5.81 (m, 1 H), 5.03–5.0 (m, 1 H), 4.30–4.28 (m, 2 H), 2.40 (s, 3 H), 1.48 (d, J = 6.0 Hz, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 143.5, 143.4, 135.1, 133.0, 129.8, 128.7, 128.2, 127.3, 126.3, 118.8, 62.9, 54.8, 22.1, 21.5 ppm. Butyl 2-Phenylcyclopent-2-ene-1-carboxylate (2g) 1H NMR (400 MHz, CDCl3): δ = 7.56–7.41 (m, 2 H), 7.41–7.11 (m, 3 H), 6.35 (td, J = 2.6, 1.6 Hz, 1 H), 4.13–3.90 (m, 3 H), 2.75 (dddd, J = 17.3, 8.9, 4.6, 2.6 Hz, 1 H), 2.68–2.53 (m, 1 H), 2.48–2.14 (m, 1 H), 1.63–1.42 (m, 2 H), 1.37–1.19 (m, 2 H), 0.87 (t, J = 7.3 Hz, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 175.3, 141.2, 135.5, 130.0, 128.3, 127.2, 125.8, 64.4, 51.3, 32.5, 30.6, 29.3, 19.0, 13.6 ppm. IR (neat): 3055, 2960, 1726, 1457, 1383, 1330 cm–1. HRMS: m/z calcd for [C16H20O2Na]+: 267.1361; found: 267.1356.