Synlett 2020; 31(03): 285-289
DOI: 10.1055/s-0039-1690783
letter
© Georg Thieme Verlag Stuttgart · New York

Manganese-Catalyzed Enantioselective Hydrogenation of Simple Ketones Using an Imidazole-Based Chiral PNN Tridentate Ligand

Fei Ling
a   Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Jiachen Chen
a   Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Sanfei Nian
a   Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Huacui Hou
a   Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Xiao Yi
a   Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Feifei Wu
a   Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Min Xu
b   Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   eMail: weihuizhong@zju.edu.cn
,
Weihui Zhong
a   Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences Zhejiang University of Technology, Hangzhou 310014, P. R. of China
b   Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   eMail: weihuizhong@zju.edu.cn
› Institutsangaben
We thank the National Natural Science Foundation of China (Nos. 21706234, 21676253 and 21978271), the Natural Science Foundation of Zhejiang Province of China (Nos. LY19B060011 and LY15B060007) for financial support.
Weitere Informationen

Publikationsverlauf

Received: 28. Oktober 2019

Accepted after revision: 11. Dezember 2019

Publikationsdatum:
10. Januar 2020 (online)


Abstract

A series of Mn(I) catalysts containing imidazole-based chiral PNN tridentate ligands with controllable ‘side arm’ groups have been established, enabling the inexpensive base-promoted asymmetric hydrogenation of simple ketones with outstanding activities (up to 8200 TON) and good enantioselectivities (up to 88.5% ee). This protocol features wide substrate scope and functional group tolerance, thereby providing easy access to a key intermediate of crizotinib.

Supporting Information

 
  • References

  • 3 For a review, see: Zhang Z, Butt NA, Zhou M, Liu D, Zhang W. Chin. J. Chem. 2018; 36: 443
    • 5a Hamada Y, Koseki Y, Fujii T, Maeda T, Hibino T, Makino K. Chem. Commun. 2008; 6206
    • 5b Hibino T, Makino K, Sugiyama T, Hamada Y. ChemCatChem 2009; 1: 237
    • 6a Berkessel A, Reichau S, von der Höh A, Leconte N, Neudörfl J.-M. Organometallics 2011; 30: 3880
    • 6b Gajewski P, Renom-Carrasco M, Facchini SV, Pignataro L, Lefort L, de Vries JG, Ferraccioli R, Forni A, Piarulli U, Gennari C. Eur. J. Org. Chem. 2015; 1887
    • 6c Hodgkinson R, Del Grosso A, Clarkson GJ, Wills M. Dalton Trans. 2016; 3992
  • 9 Widegren MB, Harkness GJ, Slawin AM. Z, Cordes DB, Clarke ML. Angew. Chem. Int. Ed. 2017; 56: 5825
  • 10 Garbe M, Junge K, Walker S, Wei Z, Jiao H, Spannenberg A, Bachmann S, Scalone M, Beller M. Angew. Chem. Int. Ed. 2017; 56: 11237
  • 11 Zhang L, Tang Y, Han Z, Ding K. Angew. Chem. Int. Ed. 2019; 58: 4973
  • 13 Ling F, Nian S, Chen J, Luo W, Wang Z, Lv Y, Zhong W. J. Org. Chem. 2018; 83: 10749
  • 15 General Procedure for the Preparation of Ligands: A solution of (S C , R FC )-1 (1 mmol), benzimidazole aldehyde (1.1 mmol) in anhydrous MeOH was stirred at 60 °C for 10–12 h, The reaction was cooled to room temperature, then NaBH4 (3 mmol) was added and the mixture was heated to 60 °C again, and stirred at this temperature for 4 h. The solvent was removed under vacuum, and the crude ligand was purified by column chromatography on silica gel. L2: Orange solid (432.0 mg, 75% yield); mp 84–85 °C; [α]D 20 = +120.0 (c = 0.5, CHCl3). 1H NMR (600 MHz, CDCl3): δ = 7.71 (d, J = 7.8 Hz, 1 H), 7.55–7.53 (m, 2 H), 7.2–7.36 (m, 3 H), 7.21–7.14 (m, 8 H), 7.09–7.07 (m, 3 H), 7.02–6.99 (m, 1 H), 6.85–6.83 (m, 2 H), 5.03 (d, J = 16.8 Hz, 1 H), 4.87 (d, J = 16.8 Hz, 1 H), 4.48 (s, 1 H), 4.31 (s, 1 H), 4.17–4.15 (m, 1 H), 3.95 (s, 5 H), 3.86 (s, 1 H), 3.74 (d, J = 13.8 Hz, 1 H), 3.65 (d, J = 13.8 Hz, 1 H), 1.52 (d, J = 6.6 Hz, 3 H). 13C NMR (150 MHz, CDCl3): δ = 153.1, 142.4, 140.5 (d, J = 10.5 Hz), 137.6 (d, J = 9.0 Hz), 136.6, 135.7, 135.3, 135.1, 132.5, 132.4, 129.2, 128.7, 128.2, 128.12, 128.07, 127.8, 127.5, 126.3, 122.4, 121.8, 119.5, 109.6, 97.8 (d, J = 25.5 Hz), 75.0 (d, J = 9.0 Hz), 71.3 (d, J = 4.5 Hz), 69.7, 69.3, 69.0 (d, J = 4.5 Hz), 51.4 (d, J = 9.0 Hz), 46.4, 44.0, 20.0. 31P NMR (162 MHz, CDCl3): δ = –24.25. HRMS (ESI): m/z [M + H]+ calcd for C39H36FeN3P: 634.2069; found: 634.1996.
  • 16 Liao S, Sun X.-L, Tang Y. Acc. Chem. Res. 2014; 47: 2260
  • 17 de Koning PD, McAndrew D, Moore R, Moses IB, Boyles DC, Kissick K, Stanchina CL, Cuthbertson T, Kamatani A, Rahman L, Rodriguez R, Urbina A, Sandoval A, Rose PR. Org. Process Res. Dev. 2011; 15: 1018
  • 18 General Procedure for the Asymmetric Hydrogenation of Ketones Under an argon atmosphere, a vial was charged with Mn(CO)5Br/L2 (0.1 mol%) and KOH (2 mol%), which were dissolved in dried MeOH (2 mL). The resulting red solution was stirred briefly before the ketone (1 mmol) was added. The vial was placed in an alloy plate that was then placed into an autoclave. The autoclave was purged five times with hydrogen, then pressurized to 3.0 Mpa, and stirred at room temperature for 10 h. After slowly releasing the hydrogen pressure, the solvent was removed, and the mixture was purified by passing through a short column of silica gel to afford the corresponding alcohol. The ee values of all compounds were determined by HPLC analysis with a chiral column. (R)-1-(4-Methoxyphenyl)ethan-1-ol (4k): Colorless oil (150.4 mg, 99% yield); 84.9% ee (R); [α]D 20 = +41.5 (c = 0.5, CHCl3). HPLC conditions: Chiralpak OJ-H column, hexane/isopropanol = 95:5; flow rate = 0.8 mL/min; UV detection at 220 nm; (S) = 33.74 min (minor), (R) = 35.98 min (major). 1H NMR (600 MHz, CDCl3): δ = 7.25 (d, J = 8.4 Hz, 2 H), 6.84 (d, J = 9.0 Hz, 2 H), 4.78 (q, J = 6.0 Hz, 1 H), 3.76 (s, 3 H), 2.57 (brs, 1 H), 1.43 (d, J = 6.6 Hz, 3 H). 13C NMR (150 MHz, CDCl3): δ = 158.9, 138.1, 126.7, 113.8, 69.8, 55.3, 25.0. (R)-1-(2,6-Dichloro-3-fluorophenyl)ethan-1-ol (4m): Colorless oil (182.2 mg, 88% yield); 85.1% ee (R); [α]D 20 = –13.1 (c = 0.5, CHCl3). HPLC conditions: Chiralpak OD-H column, hexane/isopropanol = 90:10 flow rate = 0.8 mL/min; UV detection at 220 nm; (S) = 13.31 min (minor), (R) = 14.02 min (major). 1H NMR (400 MHz, CDCl3): δ = 7.32–7.28 (dd, J = 8.8, 4.8 Hz,1 H), 7.06 (dd, J = 16.8, 8.4 Hz, 1 H), 5.64 (q, J = 7.2 Hz, 1 H), 2.84 (brs, 1 H), 1.69 (d, J = 6.8 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 157.3; (1 J C–F = 248 Hz), 140.5, 129.6; (3 J C–F = 7 Hz), 128.3, 121.5, 115.6; (2 J C–F = 23 Hz), 68.4, 21.0.