Synlett 2021; 32(15): 1525-1530
DOI: 10.1055/s-0040-1706013
cluster
Modern Nickel-Catalyzed Reactions

Nickel-Catalyzed Cross-Electrophile Coupling of the Difluoromethyl Group for Fluorinated Cyclopropane Synthesis

,
Tristan M. McGinnis
,
,
Financial support from the Center for Scientific Review (NIH NIGMS R01GM100212) is gratefully acknowledged.


Abstract

Herein, we report a new strategy for fluorinated cyclopropane synthesis. Photocatalytic olefin difluoromethylation is coupled with a nickel-catalyzed intramolecular cross-electrophile coupling (XEC) reaction between a difluoromethyl moiety and a benzylic ether. To the best of our knowledge, this is the first example of a XEC reaction employing a difluoromethyl group as an electrophile. A plausible mechanism is highlighted, and DFT calculations are included to support the observed stereochemical outcome.

Supporting Information



Publication History

Received: 29 July 2020

Accepted after revision: 30 December 2020

Article published online:
28 January 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Present address: Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA.
  • 2 Present address: Department of Chemistry and Biochemistry, California State University, Los Angeles, CA 90032, USA.

    • For reviews, see:
    • 3a David E, Milanole G, Ivashkin P, Couve-Bonnaire S, Jubault P, Pannecoucke X. Chem. Eur. J. 2012; 18: 14904
    • 3b Pons A, Poisson T, Pannecoucke X, Charette AB, Jubault P. Synthesis 2016; 48: 4060
    • 3c Dolbier WR, Battiste MA. Chem. Rev. 2003; 103: 1071
  • 4 Lemonnier G, Lion C, Quirion J.-C, Pin J.-P, Goudet C, Jubault P. Bioorg. Med. Chem. 2012; 20: 4716
  • 5 Taele TT. J. Med. Chem. 2016; 59: 8712

    • For selected examples of fluorinated cyclopropane synthesis, see:
    • 6a Meyer OG. J, Fröhlich R, Haufe G. Synthesis 2000; 1479
    • 6b Navuluri C, Charette AB. Org. Lett. 2015; 17: 4288
    • 6c Pons A, Ivashkin P, Poisson T, Charette AB, Pannecoucke X, Jubault P. Chem. Eur. J. 2016; 22: 6239
    • 6d Fang F, Cordes DB, Slawin AM. Z, O’Hagan D. Chem. Commun. 2019; 55: 10539
    • 6e Delion L, Poisson T, Jubault P, Pannecoucke X, Charette AB. Can. J. Chem. 2020; 98: 516
    • 6f Kazia A, Melngaile R, Mishnew A, Veliks J. Org. Biomol. Chem. 2020; 18: 1384

      For recent reviews of photochemical difluoromethylation reactions, see:
    • 7a Koike T, Akita M. Org. Biomol. Chem. 2019; 17: 5413
    • 7b Pan X, Xia H, Wu J. Org. Chem. Front. 2016; 3: 1163
  • 8 Erickson LW, Lucas EL, Tollefson EJ, Jarvo ER. J. Am. Chem. Soc. 2016; 138: 14006
  • 9 O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
  • 10 Caron S. Org. Process Res. Dev. 2020; 24: 470
    • 11a Ran Y, Lin Q.-Y, Xu X.-H, Qing F.-L. J. Org. Chem. 2016; 81: 7001
    • 11b Arai Y, Tomita R, Ando G, Koike T, Akita M. Chem. Eur. J. 2016; 22: 1262
    • 11c Noto N, Koike T, Akita M. ACS Catal. 2019; 9: 4382
  • 12 Noto N, Koike T, Akita M. J. Org. Chem. 2016; 81: 7064
    • 13a Zhang Z, Tang X, Thomoson CS, Dolbier WR. Org. Lett. 2015; 17: 3528
    • 13b Noto N, Koike T, Akita M. Chem. Sci. 2017; 8: 6375
    • 13c Noto N, Tanaka Y, Koike T, Akita M. ACS Catal. 2018; 8: 9408
    • 14a Cao P, Duan J.-X, Chen Q.-Y. J. Chem. Soc., Chem. Commun. 1994; 737
    • 14b Thomoson CS, Tang X.-J, Dolbier WR. J. Org. Chem. 2015; 80: 1264
    • 14c Tang XJ, Dolbier WR. Angew. Chem. Int. Ed. 2015; 54: 4246
    • 14d Lin Q.-Y, Ran Y, Xu X.-H, Qing F.-L. Org. Lett. 2016; 18: 2419
  • 15 Yatham VR, Shen Y, Martin R. Angew. Chem. Int. Ed. 2017; 56: 10915
    • 16a Tang X.-J, Thomoson CS, Dolbier WR. Org. Lett. 2014; 16: 4594
    • 16b Liu J, Zhuang S, Gui Q, Chen X, Yang Z, Tan Z. Eur. J. Org. Chem. 2014; 3196
    • 16c He Z, Tan P, Ni C, Hu J. Org. Lett. 2015; 17: 1838
    • 16d Zhang Z, Martinez H, Dolbier WR. J. Org. Chem. 2017; 82: 2589
    • 16e Zou G, Wang X. Org. Biomol. Chem. 2017; 15: 8748
    • 16f Zhu M, You Q, Li R. J. Fluorine Chem. 2019; 228: 109391
    • 17a Zhang Z, Tang X.-J, Dolbier WR. Org. Lett. 2016; 18: 1048
    • 17b Kim YJ, Kim DY. J. Fluorine Chem. 2018; 211: 119
  • 18 Zhang M, Lin J.-H, Xiao J.-C. Angew. Chem. Int. Ed. 2019; 58: 6079
    • 19a Tang X.-J, Zhang Z, Dolbier WR. Chem. Eur. J. 2015; 21: 18961
    • 19b Lin Q.-Y, Xu X.-H, Zhang K, Qing F.-L. Angew. Chem. Int. Ed. 2016; 55: 1479
    • 19c Hu W.-Q, Xu X.-H, Qing F.-L. J. Fluorine Chem. 2018; 208: 73
  • 20 For reviews on photochemical difluoromethylation reactions, see refs. 7, 11, and: Koike T, Akita M. Chem 2018; 4: 409
  • 21 Zheng J, Cai J, Lin J, Guo Y, Xiao J. Chem. Commun. 2013; 49: 7513
  • 22 Deng Z, Lin J, Cai J, Xiao J. Org. Lett. 2016; 18: 3206
  • 23 Tamayo AB, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN, Bau R, Thompson ME. J. Am. Chem. Soc. 2003; 125: 7377
  • 24 Chen P.-P, Lucas EL, Greene MA, Zhang S.-Q, Tollefson EJ, Erickson LW, Taylor BL. H, Jarvo ER, Hong X. J. Am. Chem. Soc. 2019; 141: 5835
  • 25 Schlenk W, Schlenk W. Ber. Dtsch. Chem. Ges. B 1929; 62: 920

    • This principle has previously been successful in facilitating the oxidative addition of benzylic C–O bonds, see:
    • 26a Greene MA, Yonova IM, Williams FJ, Jarvo ER. Org. Lett. 2012; 14: 4293
    • 26b Wisniewska HM, Swift EC, Jarvo ER. J. Am. Chem. Soc. 2013; 135: 9083
  • 27 Liang Z, Xue W, Lin K, Gong H. Org. Lett. 2014; 16: 5620
  • 28 Knappke CE. I, Grupe S, Gärtner D, Corpet M, Gosmini C, Jacobi von Wangelin A. Chem. Eur. J. 2014; 20: 6828
  • 29 Lucas EL, Hewitt KA, Chen P.-P, Castro AJ, Hong X, Jarvo ER. J. Org. Chem. 2019; 85: 1775
  • 30 Xu Z, Yang Y, Jiang J, Fu Y. Organometallics 2018; 37: 1114
  • 31 Becke AD. J. Chem. Phys. 1993; 98: 5648
  • 32 Lee C, Yang W, Parr RG. Phys. Rev. B. 1998; 37: 785
  • 33 Hehre WJ, Radom L, Schleyer P. vR, Pople JA. Ab Initio Molecular Orbital Theory . Wiley; New York: 1986
    • 34a Kirby AJ. Stereoelectronic Effects . Compton RG, Davies SG, Evans J, Gladden LF. Oxford University Press; New York: 1996
    • 34b Fleming I. Molecular Orbitals and Organic Chemical Reactions, Student Edition. John Wiley & Sons; Chichester: 2009
  • 35 2-(cis-2-Fluorocyclopropyl)naphthalene (cis-6) – Typical Procedure In a glovebox, an oven-dried 7 mL vial equipped with a stir bar was charged with substrate 5 (24 mg, 0.10 mmol, 1.0 equiv), Ni(cod)2 (1.4 mg, 5.0 μmol, 5.0 mol%), rac-BINAP (3.1 mg, 5.0 μmol, 5.0 mol%), and PhMe (0.50 mL, 0.20 M in substrate). MeMgI (77 μL, 0.20 mmol, 2.0 equiv) was then added dropwise. After 24 h, the reaction vial was removed from the glovebox, quenched with MeOH, filtered through a plug of silica gel eluting with Et2O, and concentrated in vacuo. Phenyltrimethylsilane (PhTMS; 8.6 μL, 50 μmol) was added, and a 1H NMR yield of 39% (5:1 dr, cis/trans) was obtained based on comparison to PhTMS as internal standard. The product was purified by column chromatography (100% pentane) to yield the title compound as a white semisolid. An isolated yield was not reported due to volatility. The dr was determined based on the integration of the resonances in the 1H NMR spectrum attributed to the hydrogens geminal to the fluorine atom. The relative configuration was assigned based on NOE analysis. TLC Rf = 0.6 (2% Et2O/pentane). 1H NMR (500 MHz, CDCl3): δ = 7.81–7.77 (m, 3 H), 7.71 (s, 1 H), 7.46–7.39 (m, 3 H), 4.85 (dtd, J = 66.0, 6.2, 2.9 Hz, 1 H), 2.25–2.19 (m, 1 H), 1.43 (dtd, J = 22.5, 7.7, 2.8 Hz, 1 H), 1.30–1.23 (m, 1 H). 13C NMR (125.4 MHz, CDCl3): δ = 133.7 (d, J = 3.0 Hz), 133.5, 132.4, 127.8, 127.73, 127.68, 127.23 (d, J = 1.4 Hz), 127.17 (d, J = 1.1 Hz), 126.1, 125.5, 72.7 (d, J = 221.9 Hz), 21.8 (d, J = 11.1 Hz), 11.9 (d, J = 10.4 Hz). 19F NMR (365.4 MHz, CDCl3): δ = –222.2. HRMS (TOF MS ES+): m/z [M]+ calcd for C13FH11: 186.0845; found: 186.0840.