Subscribe to RSS
DOI: 10.1055/s-0040-1706412
Unsymmetrical Heterocycle Cross-Couplings Enabled by Sulfur(IV) Reagents
This work was supported by the Robert A. Welch Foundation (Grant I-2010-20190330) and the Eugene McDermott Scholar Endowed Scholarship.Publication History
Received: 06 July 2020
Accepted after revision: 13 July 2020
Publication Date:
14 August 2020 (online)

Abstract
Whereas metal-mediated cross-couplings find broad applications in syntheses of medicines, agrochemicals, and natural products, these powerful transformations have limited utility for Lewis basic substrates (e.g., heteroarenes), wherein basic functionalities coordinate to the metal center, hindering product formation. In this context, we have developed a transition-metal-free cross-coupling reaction mediated by sulfur(IV). This method leverages the ability of simple alkyl sulfinyl(IV) chlorides to form bipyramidal sulfurane complexes to drive a pseudo ‘reductive elimination’ process from the hypervalent sulfur atom, thereby readily providing unsymmetrical biheteroarenes.
1 Introduction
2 Historical Sulfurane(IV)-Mediated Couplings
3 Unsymmetrical Heterocycle Cross-Couplings
4 Conclusion
-
References
- 1 Bolm C, Beller M. Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals, 2nd ed. Wiley-VCH; Weinheim: 2004
- 2 Hartwig J. Organotransition Metal Chemistry: From Bonding to Catalysis. University Science Books; Mill Valley: 2010
- 3 Zhou M, Tsien J, Qin T. Angew. Chem. Int. Ed. 2020; 59: 7372
- 4 Oae S, Furukawa N. Adv. Heterocycl. Chem. 1990; 48: 1
- 5 Li JK. Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications, 5th ed. Springer; Berlin: 2014: 379
- 6a Ackerman BK, Andersen KK, Karup-Nielsen I, Peynircioglu NB, Yeager SA. J. Org. Chem. 1974; 39: 964
- 6b Furukawa N, Shibutani T, Matsumura K, Fujihara H, Oae S. Tetrahedron Lett. 1986; 27: 3899
- 7 Gilman H, Swayampati DR. J. Am. Chem. Soc. 1955; 77: 3387
- 8 Franzen V, Mertz C. Justus Liebigs Ann. Chem. 1961; 643: 24
- 9 Trost BM, Schinski WL, Mantz IB. J. Am. Chem. Soc. 1969; 91: 4320
- 10 Andersen KK, Yeager SA, Peynircioglu NB. Tetrahedron Lett. 1970; 11: 2485
- 11 Sheppard WA. J. Am. Chem. Soc. 1971; 93: 5597
- 12 Young PR, Hsieh L.-S. J. Am. Chem. Soc. 1978; 100: 7121
- 13 Oae S, Yoshimura T, Furukawa N. Bull. Chem. Soc. Jpn. 1972; 45: 2019
- 14a Oae S, Kawai T, Furukawa N. Tetrahedron Lett. 1984; 25: 69
- 14b Oae S, Kawai T, Furukawa N, Iwasaki F. J. Chem. Soc., Perkin Trans. 2 1987; 405
- 14c Wakabayashi S, Ishida M, Takeda T, Oae S. Tetrahedron Lett. 1988; 29: 4441
- 14d Oae S, Kawai T, Furukawa N. Phosphorus Sulfur Relat. Elem. 1987; 34: 123
- 14e Furukawa N, Shibutani T, Fujihara H. Tetrahedron Lett. 1987; 28: 5845
- 14f Oae S, Takeda T, Wakabayashi S. Tetrahedron Lett. 1988; 29: 4445
- 14g Oae S, Kawai T, Furukawa N. Tetrahedron Lett. 1984; 25: 2549
- 15 Young PR, Ruekberg BP. J. Mol. Struct. THEOCHEM 1989; 186: 85
- 16 Moc J, Dorigo AE, Morokuma K. Chem. Phys. Lett. 1993; 204: 65
- 17 Oae S, Inubushi Y, Yoshihara M. Phosphorus, Sulfur Silicon Relat. Elem. 1995; 103: 101
- 18 Christensen PR, Patrick BO, Caron É, Wolf MO. Angew. Chem. Int. Ed. 2013; 52: 12946
- 19 Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Chem. Rev. 2019; 119: 8701
- 20 Dean WM, Šiaučiulis M, Storr T, Lewis W, Stockman RA. Angew. Chem. Int. Ed. 2016; 55: 10013
- 21 Šiaučiulis M, Ahlsten N, Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2019; 58: 8779
- 22 Chen D.-L, Sun Y, Chen M, Li X, Zhang L, Huang X, Bai Y, Luo F, Peng B. Org. Lett. 2019; 21: 3986
- 23 Youn J.-H, Herrmann R. Tetrahedron Lett. 1986; 27: 1493
- 24a Cox PA, Reid M, Leach AG, Campbell AD, King EJ, Lloyd-Jones GC. J. Am. Chem. Soc. 2017; 139: 13156
- 24b Cox PA, Leach AG, Campbell AD, Lloyd-Jones GC. J. Am. Chem. Soc. 2016; 138: 9145
- 25 Krasovskiy A, Knochel P. Angew. Chem. Int. Ed. 2004; 43: 3333
- 26 Krasovskiy A, Krasovskaya V, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 2958
- 27a Schader SM, Colby-Germinario SP, Quashie PK, Oliveira M, Ibanescu R.-I, Moisi D, Mespléde T, Wainberg MA. Antimicrob. Agents Chemother. 2012; 56: 4527
- 27b Wang T, Kadow JF, Meanwell NA, Yeung K.-S, Zhang Z, Yin Z, Qui Z, Deon DH, James CA, Ruediger EH, Bachband C. US 7915283B2, 2011
- 27c Pikul S, Cheng H, Cheng A, Huang CD, Ke A, Kuo L, Thompson A, Wilder S. Org. Process Res. Dev. 2013; 17: 907
For ligand-exchange examples involving hypervalent sulfur, see:
For benzylpyridine syntheses, see:
For phenyl pyridine synthesis, see:
For bipyridine syntheses, see:
For allylpyridine and styrylpyridine syntheses, see:
For pyridine homocouplings, see:
For the discovery route, see:
For a process-scale reaction, see: