Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(06): 631-635
DOI: 10.1055/s-0040-1706638
DOI: 10.1055/s-0040-1706638
letter
Synthesis of Diarylethynes from Aryldiazonium Salts by Using Calcium Carbide as an Alkyne Source in a Deep Eutectic Solvent
The authors thank the National Natural Science Foundation of China (21462038) for financial support of this work.
![](https://www.thieme-connect.de/media/synlett/202106/lookinside/thumbnails/st-2020-u0547-l_10-1055_s-0040-1706638-1.jpg)
Abstract
An efficient method for the synthesis of diarylethynes from aryldiazonium salts by using calcium carbide as an alkyne source at room temperature in a deep eutectic solvent is described. The salient features of this protocol are an inexpensive and easy-to-handle alkyne source, a nonvolatile and recyclable solvent, mild conditions, and a simple workup procedure.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706638.
- Supporting Information
Publication History
Received: 10 October 2020
Accepted after revision: 16 November 2020
Article published online:
14 December 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Yuan LZ, Hamze A, Alami M, Provot O. Synthesis 2017; 49: 504
- 1b Muzart J. J. Mol. Catal. A: Chem. 2011; 338: 7
- 1c Liu Y, Zhang G, Huang H. Org. Lett. 2017; 19: 6674
- 1d Han YR, Shim S.-H, Kim D.-S, Jun C.-H. Org. Lett. 2017; 19: 2941
- 1e Guo B, Zheng L, Zhang L, Hua R. J. Org. Chem. 2015; 80: 8430
- 1f Tsuji H, Ueda Y, Ilies L, Nakamura E. J. Am. Chem. Soc. 2010; 132: 11854
- 2 Thompson BB, Montgomery J. Org. Lett. 2011; 13: 3289
- 3 Domaradzki ME, Long YH, She ZG, Liu XC, Zhang G, Chen Y. J. Org. Chem. 2015; 80: 11360
- 4 Xie H.-Z, Gao Q, Liang Y, Wang H.-S, Pan Y.-M. Green Chem. 2014; 16: 2132
- 5 Xu J, Song X, Zhao J. Chin. J. Chem. 2014; 32: 1099
- 6 Li J.-H, Huang Q, Wang S.-Y, Ji S.-J. Org. Lett. 2018; 20: 4704
- 7a Chinchilla R, Nájera C. Chem. Rev. 2007; 107: 874
- 7b Chinchilla R, Nájera C. Chem. Soc. Rev. 2011; 40: 5084
- 7c Nagy A, Novák Z, Kotschy A. J. Organomet. Chem. 2005; 690: 4453
- 7d Akhtar R, Zahoor AF, Parveen B, Suleman M. Synth. Commun. 2019; 49: 167
- 7e Nasrollahzadeh M, Atarod M, Alizadeh M, Hatamifard A, Sajadi SM. Curr. Org. Chem. 2017; 21: 708
- 7f Karak M, Barbosa LC. A, Hargaden GC. RSC Adv. 2014; 4: 53442
- 7g Thomas AM, Sujatha A, Anilkumar G. RSC Adv. 2014; 4: 21688
- 7h Bakherad M. Appl. Organomet. Chem. 2013; 27: 125
- 7i Matake R, Niwa Y, Matsubara H. Org. Lett. 2015; 17: 2354
- 8a Prabhala P, Savanur HM, Kalkhambkar RG, Laali KK. Eur. J. Org. Chem. 2019; 2061
- 8b Jadhav VG, Sarode SA, Nagarkar JM. Tetrahedron Lett. 2015; 56: 1771
- 8c Barbero M, Cadamuro S, Dughera S. Eur. J. Org. Chem. 2014; 598
- 8d Fabrizi G, Goggiamani A, Sferrazza A, Cacchi S. Angew. Chem. Int. Ed. 2010; 49: 4067
- 8e Yang L, Li H, Du Y, Cheng K, Qi C. Adv. Synth. Catal. 2019; 361: 5030
- 8f Cai R, Lu M, Aguilera EY, Xi Y, Akhmedov NG, Petersen JL, Chen H, Shi X. Angew. Chem. Int. Ed. 2015; 54: 8772
- 8g Panda B, Sarkar TK. Chem. Commun. 2010; 46: 3131
- 8h Kim S, Rojas-Martin J, Toste FD. Chem. Sci. 2016; 7: 85
- 8i Tlahuext-Aca A, Hopkinson MN, Sahoo B, Glorius F. Chem. Sci. 2016; 7: 89
- 9a Jiang Y, Kuang C, Yang Q. Synlett 2009; 3163
- 9b Yang Q, Jiang Y, Kuang C. Helv. Chim. Acta 2012; 95: 448
- 9c Lin Z, Yu D, Sum YN, Zhang Y. ChemSusChem 2012; 5: 625
- 9d Yu D, Sum YN, Ean AC. C, Chin MP, Zhang Y. Angew. Chem. Int. Ed. 2013; 52: 5125
- 9e Sum YN, Yu D, Zhang Y. Green Chem. 2013; 15: 2718
- 9f Thavornsin N, Sukwattanasinitt M, Wacharasindhu S. Polym. Chem. 2014; 5: 48
- 9g Hosseini A, Seidel D, Miska A, Schreiner PR. Org. Lett. 2015; 17: 2808
- 9h Kaewchangwat N, Sukato R, Vchirawongkwin V, Vilaivan T, Sukwattanasinitt M, Wacharasindhu S. Green Chem. 2015; 17: 460
- 9i Rodygin KS, Ananikov VP. Green Chem. 2016; 18: 482
- 9j Rodygin KS, Werner G, Kucherov FA, Ananikov VP. Chem. Asian J. 2016; 11: 965
- 9k Teong SP, Yu D, Sum YN, Zhang Y. Green Chem. 2016; 18: 3499
- 9l Rattanangkool E, Vilaivan T, Sukwattanasinitt M, Wacharasindhu S. Eur. J. Org. Chem. 2016; 4347
- 9m Samzadeh-Kermani A. Synlett 2017; 28: 2126
- 9n Hosseini A, Pilevar A, Hogan E, Mogwitz B, Schulze AS, Schreiner PR. Org. Biomol. Chem. 2017; 15: 6800
- 9o Werner G, Rodygin KS, Kostin AA, Gordeev EG, Kashin AS, Ananikov VP. Green Chem. 2017; 19: 3032
- 9p Rodygin KS, Gyrdymova YV, Zarubaev VV. Mendeleev Commun. 2017; 27: 476
- 9q Turberg M, Ardila-Fierro KJ, Bolm C, Hernández JG. Angew. Chem. Int. Ed. 2018; 57: 10718
- 9r Voronin VV, Ledovskaya MS, Gordeev EG, Rodygin KS, Ananikov VP. J. Org. Chem. 2018; 83: 3819
- 9s Van Beek WE, Gadde K, Tehrani KA. Chem. Eur. J. 2018; 24: 16645
- 9t Rodygin KS, Vikenteva YA, Ananikov VP. ChemSusChem 2019; 12: 1483
- 9u Hosseini A, Schreiner PR. Org. Lett. 2019; 21: 3746
- 10 Gao L, Liu Z, Ma X, Li Z. Org. Lett. 2020; 22: 5246
- 11 Gao L, Li Z. Org. Chem. Front. 2020; 7: 702
- 12 Gao L, Li Z. Synlett 2019; 30: 1580
- 13 Fu R, Li Z. Org. Lett. 2018; 20: 2342
- 14 Song G, Li Z. Eur. J. Org. Chem. 2018; 1326
- 15 Lu H, Li Z. Adv. Synth. Catal. 2019; 361: 4474
- 16 Li Z, He L, Fu R, Song G, Song W, Xie D, Yang J. Tetrahedron 2016; 72: 4321
- 17 Fu R, Li Z. Eur. J. Org. Chem. 2017; 6648
- 18 Zhang W, Wu H, Liu Z, Zhong P, Zhang L, Huang X, Cheng J. Chem. Commun. 2006; 4826
- 19 Chuentragool P, Vongnam K, Rashatasakhon P, Sukwattanasinitt M, Wacharasindhu S. Tetrahedron 2011; 67: 8177
- 20a Hooshmand SE, Afshari R, Ramon DJ, Varma RS. Green Chem. 2020; 22: 3668
- 20b Dilauro G, Garcia SM, Tagarelli D, Vitale P, Perna FM, Capriati V. ChemSusChem 2018; 11: 3495
- 20c Sebest F, Casarrubios L, Rzepa HS, White AJ. P, Díez-González S. Green Chem. 2018; 20: 4023
- 20d Cicco L, Ríos-Lombardía N, Rodríguez-Álvarez MJ, Morís F, Perna FM, Capriati V, García-Álvarez J, González-Sabín J. Green Chem. 2018; 20: 3468
- 21 Diarylethynes 2a–r: General Procedure The appropriate aryldiazonium tetrafluoroborate 1 (0.4 mmol), CaC2 (77 mg, 1.2 mmol), Pd(PPh3)4 (23 mg, 0.02 mmol), CuI (8 mg, 0.04 mmol), NaI (180 mg, 1.2 mmol), and H2O (173 mg, 9.6 mmol) in DES (1:2 choline chloride–urea) (4 mL) were stirred at r.t. for 5 h. When the reaction was complete (TLC), H2O (2 mL) and EtOAc (2 mL) were added. The resulting mixture was subjected to ultrasonication for 5 min, then filtered to remove solids. The liquor was extracted with EtOAc (3 × 10 mL), and the extracts were washed with saturated brine (3 × 10 mL). The resulting organic phase was dried (Na2SO4) and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, PE–EtOAc). Diphenylethyne (2a) White solid; yield: 29.5 mg (83%); mp 59–61 °C. 1H NMR (600 MHz, CDCl3): δ = 7.53 (dd, J = 8.0, 2.0 Hz, 4H), 7.35–7.33 (m, 6 H). 13C NMR (100 MHz, CDCl3): δ = 131.6, 128.3, 128.2, 123.3, 89.3. HRMS (ESI): m/z [M + H]+ calcd for C14H11: 179.0855; found: 179.0852. Bis(4-ethoxyphenyl)ethyne (2j) Yellow solid; yield: 35.6 mg (67%); mp 163–166 °C. 1H NMR (600 MHz, CDCl3): δ = 7.42 (d, J = 8.8 Hz, 4 H), 6.84 (d, J = 8.7 Hz, 4 H), 4.04 (q, J = 7.0 Hz, 4 H), 1.41 (t, J = 7.0 Hz, 6 H). 13C NMR (150 MHz, CDCl3): δ = 158.7, 132.8, 115.6, 114.5, 87.9, 63.5, 14.7. HRMS (ESI): m/z [M + H]+ calcd for C18H19O2: 267.1380; found: 267.1382.