RSS-Feed abonnieren
DOI: 10.1055/s-0040-1707118
Transition-Metal-Catalyzed Amination of Aryl Fluorides
This project was supported by Foundation of Westlake University and China Postdoctoral Science Foundation (2019M662118).Publikationsverlauf
Received: 05. April 2020
Accepted after revision: 19. April 2020
Publikationsdatum:
14. Mai 2020 (online)
Abstract
Arene activation via transition-metal (TM) η6-coordination has merged as a powerful method to diversify the aromatic C–F bond, which is relatively less reactive due to its high bond energy. However, this strategy in general requires to use largely excess arenes or TM η6-complexes as the substrates. Herein, we highlight our recent work on the catalytic SNAr amination of electron-rich and electron-neutral aryl fluorides that are inert in classical SNAr reactions. This protocol enabled by a Ru/hemilabile ligand catalyst covers a broad scope of substrates without wasting arenes. Mechanistic studies revealed that the nucleophilic substitution proceeded on a Ru η6-arene complex, and the hemilabile ligand significant promoted the arene dissociation.
-
References
- 1a Hartwig JF. Acc. Chem. Res. 1998; 31: 852
- 1b Wolfe JP, Wagaw S, Marcoux JF, Buchwald SL. Acc. Chem. Res. 1998; 31: 805
- 1c Bariwalab J, van der Eycken E. Chem. Soc. Rev. 2013; 42: 9283
- 1d Guram AS, Rennels RA, Buchwald SL. Angew. Chem., Int. Ed. Engl. 1995; 34: 1348
- 1e Louie J, Hartwig JF. Tetrahedron Lett. 1995; 36: 3609
- 2a Monnier F, Taillefer M. Top. Organomet. Chem. 2013; 46: 173
- 2b Klapars A, Antilla JC, Huang X, Buchwald SL. J. Am. Chem. Soc. 2001; 123: 7727
- 2c Zhou W, Fan M, Yin J, Jiang Y, Ma D. J. Am. Chem. Soc. 2015; 137: 11942
- 3 Kiso Y, Tamao K, Kumada M. J. Organomet. Chem. 1973; 50: C12
- 4 Zhu F, Wang Z.-X. Adv. Synth. Catal. 2013; 355: 3694
- 5 Harada T, Ueda Y, Iwai T, Sawamura M. Chem. Commun. 2018; 54: 1718
- 6 Wang Y, Wei C, Tang R, Zhan H, Lin J, Liu Z, Tao W, Fang Z. Org. Biomol. Chem. 2018; 16: 6191
- 7a Carey FA, Sundberg RJ. Advanced Organic Chemistry: Part A: Structure and Mechanisms, 4th ed. . Springer; New York: 2000: 589
- 7b Terrier F. Modern Nucleophilic Aromatic Substitution . Wiley-VCH; Weinheim: 2013: e-book ISBN
- 7c Neumann CN, Ritter T. Acc. Chem. Res. 2017; 50: 2822
- 7d Rohrbach S, Smith AJ, Pang JH, Poole DL, Tuttle T, Chiba S, Murphy JA. Angew. Chem. Int. Ed. 2019; 58: 16368
- 8a Pike RD, Sweigart DA. Coord. Chem. Rev. 1999; 187: 183
- 8b Pape AR, Kaliappan KP, Kündig EP. Chem. Rev. 2000; 100: 2917
- 8c Pigge FC, Coniglio JJ. Curr. Org. Chem. 2001; 5: 757
- 8d Semmelhack MF, Chlenov A. Top. Organomet. Chem. 2004; 7: 43
- 8e Semmelhack MF, Hilt G, Colley JH. Tetrahedron Lett. 1998; 39: 7683
- 8f Kamikawa K, Kinoshita S, Furusyo M, Takemoto S, Matsuzaka H, Uemura M. J. Org. Chem. 2007; 72: 3394
- 8g Braun W, Calmuschi-Cula B, Englert U, Höfener K, Alberico E, Salzer A. Eur. J. Org. Chem. 2008; 2065
- 8h McGrew GI, Temaismithi J, Carroll PJ, Walsh PJ. Angew. Chem. Int. Ed. 2010; 49: 5541
- 8i McGrew GI, Stanciu C, Zhang J, Carroll PJ, Dreher SD, Walsh PJ. Angew. Chem. Int. Ed. 2012; 51: 11510
- 8j Miller AJ. M, Kaminsky W, Goldberg KI. Organometallics 2014; 33: 1245
- 8k Shirakawa S, Yamamoto K, Maruoka K. Angew. Chem. Int. Ed. 2015; 54: 838
- 8l D’Amato EM, Neumann CN, Ritter T. Organometallics 2015; 34: 4626
- 8m Mao J, Zhang J, Jiang H, Bellomo A, Zhang M, Gao Z, Dreher SD, Walsh PJ. Angew. Chem. Int. Ed. 2016; 55: 2526
- 8n Beyzavi MH, Mandal D, Strebl MG, Neumann CN, D’Amato EM, Chen J, Hooker JM, Ritter T. ACS Cent. Sci. 2017; 3: 944
- 8o Pike JA, Walton JW. Chem. Commun. 2017; 53: 9858
- 9 Fischer EO, Hafner W. Z. Naturforsch., B: Anorg. Chem., Org. Chem., Biochem. , Biophys., Biol. 1955; 10b: 665
- 10a Wilkinson LA, Walton JW. Organomet. Chem. 2019; 42: 125
- 10b Takemoto S, Matsuzaka H. Tetrahedron Lett. 2018; 59: 697
- 10c Houghton RP, Voyle M, Price R. J. Chem. Soc., Perkin Trans. 1 1984; 925
- 10d Otsuka M, Endo K, Shibata T. Chem. Commun. 2010; 46: 336
- 10e Otsuka M, Yokoyama H, Endo K, Shibata T. Synlett 2010; 2601
- 10f Konovalov AI, Gorbacheva EO, Miloserdov FM, Grushin VV. Chem. Commun. 2015; 51: 13527
- 10g Walton JW, Williams JM. J. Chem. Commun. 2015; 51: 2786
- 11 Mahaffy CA. L, Pauson PL. J. Chem. Res., Synop. 1979; 126
- 12a Semmelhack MF, Seufert W, Keller L. J. Organomet. Chem. 1982; 226: 183
- 12b Kündig EP, Kondratenko M, Romanens P. Angew. Chem. Int. Ed. 1998; 37: 3146
- 12c Semmelhack MF, Chlenov A, Ho DM. J. Am. Chem. Soc. 2005; 127: 7759
- 13 Kang Q.-K, Lin Y, Li Y, Shi H. J. Am. Chem. Soc. 2020; 142: 3706
For selected reviews, see:
For selected examples, see:
For selected reviews, see:
For selected examples, see:
For selected reviews of SNAr reaction, see:
For selected reviews, see:
For selected recent examples, see:
For selected reviews, see:
For catalytic SNAr reactions via η6-coordination, see: