Subscribe to RSS
DOI: 10.1055/s-0040-1707157
Decarboxylative Umpolung Synthesis of Amines from Carbonyl Compounds
We are grateful for the generous financial support from the National Natural Science Foundation of China (Grant No. 21672148 and 21871181), the Shanghai Municipal Education Commission (Grant No. 2019-01-07-00-02-E00029), the Science and Technology Commission of Shanghai Municipality (Grant No.19XD1402700), and the Shanghai Engineering Research Center of Green Energy Chemical Engineering.Publication History
Received: 14 May 2020
Accepted after revision: 23 May 2020
Publication Date:
12 July 2020 (online)
Abstract
2-Azaallyl anions are valuable intermediates which have versatile applications in functionalization with various electrophiles. Decarboxylation of the imines formed from aromatic aldehydes and α,α-diphenylglycine provides an interesting and efficient way to generate delocalized 2-azaallyl anions, which display high reactivity toward different electrophiles with excellent regioselectivity at the diphenylketimino aryl carbon of the 2-azaallyl anions. The transformation produces various amines in good yields under very mild conditions. This Synpacts article highlights the recent advances on the decarboxylative umpolung synthesis of amines from carbonyl compounds.
1 Introduction
2 Decarboxylative Umpolung Reactions of Carbonyl Compounds with Different Electrophiles
2.1 Reaction with π-Allyl–Pd(II) Species
2.2 Reaction with Morita–Baylis–Hillman Adducts
2.3 Reaction with Imines
2.3.1 Intermolecular Reaction with N-Ts Imines
2.3.2 Intramolecular Reaction with Chiral N-tert-Butanesulfinyl Imines
2.4 Reaction with Aldehydes and Ketones
3 Decarboxylative Umpolung Reaction of α,β-Unsaturated Aldehydes with Aldehydes
4 Conclusion
-
References
- 1 Erlenmeyer EJr. Justus Liebigs Ann. Chem. 1899; 307: 113
- 3 Tang S, Zhang X, Sun J, Niu D, Chruma JJ. Chem. Rev. 2018; 118: 10393
- 4 Burger EC, Tunge JA. J. Am. Chem. Soc. 2006; 128: 10002
- 5a Yeagley AA, Chruma JJ. Org. Lett. 2007; 9: 2879
- 5b Fields WH, Khan AK, Sabat M, Chruma JJ. Org. Lett. 2008; 10: 5131
- 5c Yeagley AA, Lowder MA, Chruma JJ. Org. Lett. 2009; 11: 4022
- 5d Fields WH, Chruma JJ. Org. Lett. 2010; 12: 316
- 5e Li Z, Jiang Y.-Y, Yeagley AA, Bour JP, Liu L, Chruma JJ, Fu Y. Chem. Eur. J. 2012; 18: 14527
- 5f Qian X, Ji P, He C, Zirimwabagabo J.-O, Archibald MM, Yeagley AA, Chruma JJ. Org. Lett. 2014; 16: 5228
- 5g Wang S, Qian X, Chang Y, Sun J, Xing X, Ballard WF, Chruma JJ. J. Org. Chem. 2018; 83: 4054
- 5h Tang S, Wei W, Yin D, Poznik M, Chruma JJ. Eur. J. Org. Chem. 2019; 3964
- 5i Liu C, Deng C, Yang H, Qian X, Tang S, Poznik M, Chruma JJ. J. Org. Chem. 2019; 84: 10102
- 6a Skelly PD, Ray WJ. Jr, Timberlake JW. J. Org. Chem. 1985; 50: 267
-
6b
Albert J,
Arnold J,
Chessari G,
Congreve MS,
Edwards P,
Murray C,
Patel S.
PCT Int. Appl. WO 2007058601A1 2007 .
- 7a Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
- 7b Brehme R, Enders D, Fernandez R, Lassaletta JM. Eur. J. Org. Chem. 2007; 5629
- 7c Eisch JJ. J. Organomet. Chem. 1995; 500: 101
- 7d Seebach D. Angew. Chem. 1979; 91: 259
- 8 Ding L, Chen J, Hu Y, Xu J, Gong X, Xu D, Zhao B, Li H. Org. Lett. 2014; 16: 720
- 9 Xu J, Chen J, Yang Q, Ding L, Liu X, Xu D, Zhao B. Adv. Synth. Catal. 2014; 356: 3219
- 10 Liu X, Gao A, Ding L, Xu J, Zhao B. Org. Lett. 2014; 16: 2118
- 11 Liu F, Zhao G, Cai W, Xu D, Zhao B. Org. Biomol. Chem. 2018; 16: 7498
- 12 Chen J, Tian J, Liu F, Liu Y, Zhao G, Yuan W, Zhao B. ACS Omega 2018; 3: 14671
- 13 Liu F, Tian J, Liu Y, Tao C, Zhu H, Zhang A, Xu D, Zhao B. Org. Chem. Front. 2017; 4: 1586
- 14a Puentes CO, Kouznetsov V. J. Heterocycl. Chem. 2002; 39: 595
- 14b Yus M, González-Gómez JC, Foubelo F. Chem. Rev. 2013; 113: 5595
- 15a Ramadhar TR, Batey RA. Synthesis 2011; 1321
- 15b Yus M, González-Gómez JC, Foubelo F. Chem. Rev. 2011; 111: 7774
- 15c Ramachandran PV, Burghardt TE. Pure Appl. Chem. 2006; 78: 1397
- 15d Hernandez E, Canales E, Gonzalez E, Soderquist JA. Pure Appl. Chem. 2006; 78: 1389
- 16a Petrini M, Profeta R, Righi P. J. Org. Chem. 2002; 67: 4530
- 16b Fernandes RA, Yamamoto Y. J. Org. Chem. 2004; 69: 3562
- 16c Elford TG, Hall DG. Tetrahedron Lett. 2008; 49: 6995
- 16d Chataigner I, Zammattio F, Lebreton J, Villiéras J. Tetrahedron 2008; 64: 2441
- 16e Elford TG, Ulaczyk-Lesanko A, Pascale GD, Wright GD, Hall DG. J. Comb. Chem. 2009; 11: 155
- 16f Shen A, Liu M, Jia Z.-S, Xu M.-H, Lin G.-Q. Org. Lett. 2010; 12: 5154
- 16g Lee AS.-Y, Chang Y.-T. Tetrahedron Lett. 2010; 51: 3800
- 16h Bonazzi S, Cheng B, Wzorek JS, Evans DA. J. Am. Chem. Soc. 2013; 135: 9338
- 17a Albrecht A, Albrecht Ł, Janecki T. Eur. J. Org. Chem. 2011; 2747
- 17b Nay B, Riache N, Evanno L. Nat. Prod. Rep. 2009; 26: 1044
- 17c Janecki T, Błaszczyk E, Studzian K, Janecka A, Krajewska U, Różalski M. J. Med. Chem. 2005; 48: 3516
- 17d Krawczyk H, Albrecht Ł, Wojciechowski J, Wolf WM, Krajewska U, Różalski M. Tetrahedron 2008; 64: 6307
- 17e Albrecht A, Koszuk JF, Modranka J, Różalski M, Krajewska U, Janecka A, Studzian K, Janecki T. Bioorg. Med. Chem. 2008; 16: 4872
- 17f Albrecht A, Albrecht Ł, Różalski M, Krajewska U, Janecka A, Studzian K, Janecki T. New. J. Chem. 2010; 34: 750
- 18 Wu L, Xie C, Mei H, Dai Y, Han J, Soloshonok VA, Pan Y. J. Org. Chem. 2015; 80: 3187
- 19a Perego P, Robert J. Cancer Chemother. Pharmacol. 2016; 77: 5
- 19b Laver G. Future Virol. 2006; 1: 577
- 20a Yoon TP, Jacobsen EN. Science 2003; 299: 1691
- 20b Zhou Q.-L. Focus on Catalysts . Wiley-VCH; Weinheim: 2011
- 20c Zhao B, Han Z, Ding K. Angew. Chem. Int. Ed. 2013; 52: 4744
- 20d Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
- 21 Tang S, Park JY, Yeagley AA, Sabat M, Chruma JJ. Org. Lett. 2015; 17: 2042
- 22a Dey AS, Neumeyer JL. J. Med. Chem. 1974; 17: 1095
- 22b Wert KL, Chackalamannil S, Miller E, Dalton DR, Zacharias DE, Glusker JP. J. Org. Chem. 1982; 47: 5141
- 22c Lebœuf M, Cortes D, Hocquemiller R, Cavé A. Planta Med. 1983; 48: 234
- 22d Blum J, Setty-Fichman M, Efron L, Shaik S, Harvey RG. Tetrahedron 1994; 50: 8505
- 22e Ku AF, Cuny GD. Org. Lett. 2015; 17: 1134
For reviews on α-exo-methylidene-γ-lactams, see:
For selected examples on bioactive α-methylidene-γ-lactams, see:
For selected references, see: