Synlett, Table of Contents Synlett 2020; 31(19): 1907-1912DOI: 10.1055/s-0040-1707281 cluster Integrated Synthesis Using Continuous-Flow Technologies Photochemical Flow Oximation of Alkanes Oliver M. Griffiths a Department of Chemistry, University of Durham, South Road, Durham, Durham, DH1 3LE, UK Email: i.r.baxendale@durham.ac.uk b Department of Chemistry, Cambridge University, South Road, Cambridge, Cambridgeshire, CB2 1EW, UK , Michele Ruggeri a Department of Chemistry, University of Durham, South Road, Durham, Durham, DH1 3LE, UK Email: i.r.baxendale@durham.ac.uk , Ian R. Baxendale∗ a Department of Chemistry, University of Durham, South Road, Durham, Durham, DH1 3LE, UK Email: i.r.baxendale@durham.ac.uk › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract The nitrosation of several alkanes using tert-butyl nitrite has been performed in flow showing a remarkable reduction in the reaction time compared with batch processing. Due to the necessity for large excesses of the alkane component a continuous recycling process was devised for the preparation of larger quantities of material. Key words Key wordsnitrosation - oximes - flow chemistry - Toray process - photochemistry Full Text References References and Notes 1 Bolotin DS, Bokach NA, Kukushkin VY. Coord. Chem. Rev. 2016; 313: 62 2a Tamada M, Seko N, Yoshii F. Radiat. Phys. Chem. 2004; 71: 221 2b Seko N, Tamada M, Yoshii F. Nucl. Instrum. Methods Phys. Res., Sect. B 2005; 236: 21 3a Logan RT, Redpath J, Roy RG. EP 0199393, 1986 3b Huang C.-T, Pelosi SS. Jr, Bayless AV. US 4882354, 1989 3c Shahid M, Martorana MG, Cottney JE, Marshall RJ. J. Pharmacol. 1990; 100: 735 4a Soga S, Neckers LM, Schulte TW, Shiotsu Y, Akasaka K, Narumi H, Agatsuma T, Ikuina Y, Murakata C, Tamaoki T, Akinaga S. Cancer Res. 1999; 59: 2931 4b Nikitjuka A, Jirgensons A. Chem. Heterocycl. Compd. 2014; 49: 1544 4c Hasaneen MN. Herbicides Properties, Synthesis and Control of Weeds (2012), (accessed Apr 15, 2020). IntechOpen; London: 2012. https://www.intechopen.com/books/herbicides-properties-synthesis-and-control-of-weeds 4d Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Varella EA, Nicolaides D. Curr. Pharm. Des. 2008; 14: 1001 4e Marrs TC. Pharmacol. Ther. 1993; 58: 51 4f Dawson RM. J. Appl. Toxicol. 1994; 14: 317 4g Taylor P. Anticholinesterase Agents . In The Pharmacological Basis of Therapeutics, 9th ed. Hardman JG, Limbird LE. McGraw Hill; New York: 1996: 161-176 5 Wang Z. Beckmann Rearrangement and Beckmann Fragmentation. In Comprehensive Organic Name Reactions and Reagents. John Wiley & Sons; Hoboken, NJ: 2010: 288-295 6a Ito Y. Bull. Chem. Soc. Jpn. 1956; 29: 227 6b Ito Y, Matsuda S. Ann. N.Y. Acad. Sci. 1969; 147: 618 6c Fischer M. Angew. Chem., Int. Ed. Engl. 1978; 17: 16 7a Lynn EV. J. Am. Chem. Soc. 1919; 41: 368 7b Lynn EV, Hilton O. J. Am. Chem. Soc. 1922; 44: 645 8 Lebl R, Cantillo D, Kappe CO. React. Chem. Eng. 2019; 4: 738 9a Weiß R, Wagner K, Hertel M. Chem. Ber. 1984; 117: 1965 9b Haub EK, Lizano AC, Noble ME. Inorg. Chem. 1995; 34: 1440 9c Grossi L, Strazzari S. J. Org. Chem. 1999; 64: 8076 9d Monbaliu J.-C, Jorda J, Chevalier B, Morvan B. Chim. Oggi 2011; 29: 50 10 Smith DB. Photochemistry, Vol 2. RSC; London: 1997 11 Hong WP. Iosub A. V. Stahl S. S. J. Am. Chem. Soc. 2013; 137: 13664 12a Pape M. Fortschr. Chem. Forsch. 1967; 7: 559 12b Mackor A, Veenland JU, de Boer TJ. Recl. Trav. Chim. Pays-Bas 1969; 88: 1249 12c Mackor A, de Boer TJ. Recl. Trav. Chim. Pays-Bas 1969; 89: 151 12d Mackor A, de Boer TJ. Recl. Trav. Chim. Pays-Bas 1969; 89: 159 12e Mackor A, de Boer TJ. Recl. Trav. Chim. Pays-Bas 1970; 89: 164 13a Elliott LD, Knowles JP, Koovits PJ, Maskill KG, Ralph MJ, Lejeune G, Edwards LJ, Robinson RI, Clemens IR, Cox B, Pascoe DD, Koch G, Eberle M, Berry MB, Booker-Milburn KI. Chem. Eur. J. 2014; 20: 15226 13b Baumann M, Baxendale IR. Beilstein J. Org. Chem. 2015; 11: 1194 13c Movsisyan M, Delbeke EI. P, Berton JK. E. T, Battilocchio C, Ley SV, Stevens CV. Chem. Soc. Rev. 2016; 45: 4892 13d Fanelli F, Parisi G, Degennaro L, Luisi R. Beilstein J. Org. Chem. 2017; 13: 520 13e Fuse S, Otake Y, Nakamura H. Eur. J. Org. Chem. 2017; 44: 6466 13f Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796 13g Shen G, Osako T, Nagaosa M, Uozumi Y. J. Org. Chem. 2018; 83: 7380 13h Akwi FM, Watts P. Chem. Commun. 2018; 54: 13894 13i Sambiagio C, Noël T. Trends Chem. 2020; 2: 92 13j Filippo MD, Bracken C, Baumann M. Molecules 2020; 25: 356 14 https://www.vapourtec.com/products/e-series-flow-chemistry-system/the-easy-photochem-features/ (accessed September 12, 2020). 15 Wysocki D, Teles JH, Dehn R, Trapp O, Schäfer B, Schaub T. ChemPhotoChem 2018; 2: 22 16 Smith DB. Photochemistry, Vol. 1, 2nd ed. RSC; London: 1970 17a Browne DL, Baxendale IR, Ley SV. Tetrahedron 2011; 67: 10296 17b Hu T, Baxendale IR, Baumann M. Molecules 2016; 21: 918 17c Röder L, Nicholls AJ, Baxendale IR. Molecules 2019; 24: 1996 18 Donaruma LG, Carmody DJ. J. Org. Chem. 1957; 22: 635 19 Donaruma LG. J. Org. Chem. 1958; 23: 1338 20 Burrell EJ. J. Phys. Chem. 1962; 66: 401 21a Semmler W. Chem. Ber. 1892; 25: 3352 21b Wolff L. Liebigs Ann. 1902; 322: 351 22a Alfassi ZB, Feldman L. Int. J. Chem. Kinet. 1981; 13: 771 22b CRC Handbook of Chemistry and Physics, 85th ed. Lide DR. CRC Press; Boca Raton, FL: 2004 23 Laarhoven LJ. J, Mulder P. J. Phys. Chem. 1997; 101: 73 Supplementary Material Supplementary Material Supporting Information