RSS-Feed abonnieren
DOI: 10.1055/s-0040-1707326
Designing the Secondary Coordination Sphere in Small-Molecule Catalysis
This research was supported by the Israel Science Foundation (Grant No. 1193/17). I. L. Z. gratefully acknowledges the BGU Faculty of Natural Sciences for an MSc excellence fellowship. S.C.G. gratefully acknowledges the Kreitman School of Advanced Graduate Studies, Ben-Gurion University of the Negev for a postdoctoral fellowship.

Abstract
The application of secondary-sphere interactions in catalysis was inspired by the hierarchical arrangement of the microenvironment of metalloprotein active sites and has been adopted mainly in organometallic catalysis. The study of such interactions has enabled the deliberate orientation of reaction components, leading to control over reactivity and selectivity by design. Although not as common, such interaction can play a decisive role in organocatalysis. Herein, we present several examples of small-molecule organometallic- and organocatalysis, highlighting the advantages offered by carefully designing the secondary sphere.
1 Introduction
2 Secondary-Sphere Design in Organometallic Catalysis
3 Secondary-Sphere Modification in Organocatalysis
4 Using Statistical Analysis to Systematically Tune and Probe Secondary-Sphere Interactions
5 Conclusion
Key words
secondary coordination sphere - noncovalent interactions - hydrogen bonds - organometallics - organocatalysisPublikationsverlauf
Eingereicht: 24. August 2020
Angenommen nach Revision: 15. September 2020
Artikel online veröffentlicht:
12. Oktober 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1
Toste FD,
Sigman MS,
Miller SJ.
Acc. Chem. Res. 2017; 50: 609
MissingFormLabel
- 2
Davis HJ,
Phipps RJ.
Chem. Sci. 2017; 8: 864
MissingFormLabel
- 3
Leenders SH. A. M,
Gramage-Doria R,
De Bruin B,
Reek JN. H.
Chem. Soc. Rev. 2015; 44: 433
MissingFormLabel
- 4
Bone R,
Silen JL,
Agard DA.
Acc. Chem. Res. 1990; 23: 120
MissingFormLabel
- 5
Borovik AS.
Acc. Chem. Res. 2005; 38: 54
MissingFormLabel
- 6
Cook SA,
Borovik AS.
Acc. Chem. Res. 2015; 48: 2407
MissingFormLabel
- 7
Lucas RL,
Zart MK,
Murkerjee J,
Sorrell TN,
Powell DR,
Borovik AS.
J. Am. Chem. Soc. 2006; 128: 15476
MissingFormLabel
- 8
Matson EM,
Bertke JA,
Fout AR.
Inorg. Chem. 2014; 53: 4450
MissingFormLabel
- 9
Ford CL,
Park YJ,
Matson EM,
Gordon Z,
Fout AR.
Science 2016; 354: 741
MissingFormLabel
- 10
Breslow R,
Zhang B.
J. Am. Chem. Soc. 1996; 118: 8495
MissingFormLabel
- 11
Breslow R,
Huang Y,
Zhang X,
Yang J.
Angew. Chem., Int. Ed. Engl. 1997; 94: 11156
MissingFormLabel
- 12
Frost JR,
Huber SM,
Breitenlechner S,
Bannwarth C,
Bach T.
Angew. Chem. Int. Ed. 2015; 54: 691
MissingFormLabel
- 13
Olivo G,
Fairnelli G,
Barbieri A,
Lanzalunga O,
Di Stefano S,
Costas M.
Angew. Chem. Int. Ed. 2017; 56: 16347
MissingFormLabel
- 14
Das S,
Incarvito CD,
Crabtree RH,
Brudvig GW.
Science 2006; 312: 1941
MissingFormLabel
- 15
Gellrich U,
Huang J,
Seiche W,
Keller M,
Meuwly M,
Breit B.
J. Am. Chem. Soc. 2011; 133: 964
MissingFormLabel
- 16
Fuchs D,
Rousseau G,
Diab L,
Gellrich U,
Breit B.
Angew. Chem. Int. Ed. 2012; 51: 2178
MissingFormLabel
- 17
Kuninobu Y,
Ida H,
Nishi M,
Kanai M.
Nat. Chem. 2015; 7: 712
MissingFormLabel
- 18
Davis HJ,
Mihai MT,
Phipps RJ.
J. Am. Chem. Soc. 2016; 138: 12759
MissingFormLabel
- 19
Han Z,
Li P,
Zhang Z,
Chen C,
Wang Q,
Dong X.-Q,
Zhang X.
ACS Catal. 2016; 6: 6214
MissingFormLabel
- 20
Voss F,
Herdtweck E,
Bach T.
Chem. Commun. 2011; 47: 2137
MissingFormLabel
- 21
Neel AJ,
Hilton MJ,
Sigman MS,
Toste FD.
Nature 2017; 543: 637
MissingFormLabel
- 22
Jung H,
Schrader M,
Kim D,
Baik M.-H,
Park Y,
Chang S.
J. Am. Chem. Soc. 2019; 141: 15356
MissingFormLabel
- 23
Reichardt C.
Chem. Rev. 1994; 94: 2319
MissingFormLabel
- 24
Smithrud DB,
Diederich F.
J. Am. Chem. Soc. 1990; 112: 339
MissingFormLabel
- 25
Cubberley MS,
Iverson BL.
J. Am. Chem. Soc. 2001; 123: 7560
MissingFormLabel
- 26
Clarke ML,
Fuentes JA.
Angew. Chem. Int. Ed. 2007; 46: 930
MissingFormLabel
- 27
Fuentes JA,
Lebl T,
Slawin AM. Z,
Clarke ML.
Chem. Sci. 2011; 2: 1997
MissingFormLabel
- 28
Lewis CA,
Gustafson JL,
Chiu A,
Balsells J,
Pollard D,
Murry J,
Reamer RA,
Hansen KB,
Miller SJ.
J. Am. Chem. Soc. 2008; 130: 16358
MissingFormLabel
- 29
Gustafson JL,
Sigman MS,
Miller SJ.
Org. Lett. 2010; 12: 2794
MissingFormLabel
- 30
Siegel JB,
Zanghellini A,
Lovick HM,
Kiss G,
Lambert AR,
St Clair JL,
Gallaher JL,
Hilvert D,
Gelb MH,
Stoddard BL,
Houk KN,
Michael FE,
Baker D.
Science 2010; 329: 309
MissingFormLabel
- 31
Dantas G,
Kuhlman B,
Callender D,
Wong M,
Baker D.
J. Mol. Biol. 2003; 332: 449
MissingFormLabel
- 32
Zanghellini A,
Jiang L,
Wollacott AM,
Cheng G,
Meiler J,
Althoff EA,
Röthlisberger D,
Baker D.
Protein Sci. 2006; 15: 2785
MissingFormLabel
- 33
Dhayalan V,
Gadekar SC,
Alassad Z,
Milo A.
Nat. Chem. 2019; 11: 543
MissingFormLabel
- 34
Baragwanath L,
Rose CA,
Zeitler K,
Connon SJ.
J. Org. Chem. 2009; 74: 9214
MissingFormLabel