Subscribe to RSS
DOI: 10.1055/s-0040-1719860
Introduction to Spatial Anion Control for Direct C–H Arylation
We acknowledge the funding of our research in the area of C–H activation by the Department of Chemistry, University of Zurich (UZH), the UZH Alumni – Fonds zur Förderung des akademischen Nachwuchses (FAN), the Dr. Helmut Legerlotz-Stiftung, the Prof. Dr. Hans E. Schmid-Stiftung, a Forschungskredit Postdoc UZH, the Foundation for Research in Science and the Humanities at the UZH, the Alfred Werner-Legat, the China Scholarship Council, and the Holcim Stiftung.

Abstract
C–H activation of functionally rich molecules without the need for directing groups promises shorter organic syntheses and late-stage diversification of molecules for drug discovery. We highlight recent examples of palladium-catalyzed nondirected functionalization of C–H bonds in arenes as limiting substrates with a focus on the development of the concept of spatial anion control for direct C–H arylation.
1 C–H Activation and the CMD Mechanism
2 Nondirected C–H Functionalizations of Arenes as Limiting Substrates
3 Nondirected C–H Arylation
4 Spatial Anion Control for Direct C–H Arylation
5 Coordination Chemistry with Spatial Anion Control
6 Conclusion
Key words
C–H activation - concerted metalation-deprotonation - CMD - C–H arylation - spatial anion control - palladiumPublication History
Received: 18 October 2021
Accepted after revision: 23 November 2021
Article published online:
01 February 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
- 2 Abrams DJ, Provencher PA, Sorensen EJ. Chem. Soc. Rev. 2018; 47: 8925
- 3 Lam NY. S, Wu K, Yu J.-Q. Angew. Chem. Int. Ed. 2021; 60: 15767
- 4 Aynetdinova D, Callens MC, Hicks HB, Poh CY. X, Shennan BD. A, Boyd AM, Lim ZH, Leitch JA, Dixon DJ. Chem. Soc. Rev. 2021; 50: 5517
- 5 Guillemard L, Kaplaneris N, Ackermann L, Johansson MJ. Nat. Rev. Chem. 2021; 5: 522
- 6 Dalton T, Faber T, Glorius F. ACS Cent. Sci. 2021; 7: 245
- 7 Baudoin O. Angew. Chem. Int. Ed. 2020; 59: 17798
- 8 Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
- 9 Davies HM. L, Morton D. ACS Cent. Sci. 2017; 3: 936
- 10 Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
- 11 He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
- 12 Meng G, Lam NY. S, Lucas EL, Saint-Denis TG, Verma P, Chekshin N, Yu J.-Q. J. Am. Chem. Soc. 2020; 142: 10571
- 13 Hartwig JF, Larsen MA. ACS Cent. Sci. 2016; 2: 281
- 14 Wedi P, van Gemmeren M. Angew. Chem. Int. Ed. 2018; 57: 13016
- 15 Mondal A, Wedi P, van Gemmeren M. In Remote C–H Bond Functionalizations: Methods and Strategies in Organic Synthesis . Maiti D, Guin S. Wiley-VCH; Weinheim: 2021: 191
- 16 Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
- 17 Dutta U, Maiti S, Bhattacharya T, Maiti D. Science 2021; 372: eabd5992
- 18 Kancherla S, Jørgensen KB, Fernández-Ibáñez M. Á. Synthesis 2019; 51: 643
- 19 Ping L, Chung DS, Bouffard J, Lee S.-g. Chem. Soc. Rev. 2017; 46: 4299
- 20 Chen H, Farizyan M, van Gemmeren M. Eur. J. Org. Chem. 2020; 6318
- 21 Hirano K, Miura M. In Remote C–H Bond Functionalizations: Methods and Strategies in Organic Synthesis . Maiti D, Guin S. Wiley-VCH; Weinheim: 2021: 253
- 22 Lafrance M, Fagnou K. J. Am. Chem. Soc. 2006; 128: 16496
- 23 Lapointe D, Fagnou K. Chem. Lett. 2010; 39: 1118
- 24 Boutadla Y, Davies DL, Macgregor SA, Poblador-Bahamonde AI. Dalton Trans. 2009; 5820
- 25 Ackermann L. Chem. Rev. 2011; 111: 1315
- 26 Campeau L.-C, Parisien M, Leblanc M, Fagnou K. J. Am. Chem. Soc. 2004; 126: 9186
- 27 Davies DL, Donald SM. A, Macgregor SA. J. Am. Chem. Soc. 2005; 127: 13754
- 28 García-Cuadrado D, Braga AA. C, Maseras F, Echavarren AM. J. Am. Chem. Soc. 2006; 128: 1066
- 29 Oxgaard J, Tenn WJ, Nielsen RJ, Periana RA, Goddard WA. Organometallics 2007; 26: 1565
- 30 Winstein S, Traylor TG. J. Am. Chem. Soc. 1955; 77: 3747
- 31 Fung CW, Khorramdel-Vahed M, Ranson RJ, Roberts RM. G. J. Chem. Soc., Perkin Trans. 2 1980; 267
- 32 Davies DL, Macgregor SA, McMullin CL. Chem. Rev. 2017; 117: 8649
- 33 Rogge T, Oliveira JC. A, Kuniyil R, Hu L, Ackermann L. ACS Catal. 2020; 10: 10551
- 34 Carrow BP, Sampson J, Wang L. Isr. J. Chem. 2020; 60: 230
- 35 Dhankhar J, González-Fernández E, Dong C.-C, Mukhopadhyay TK, Linden A, Čorić I. J. Am. Chem. Soc. 2020; 142: 19040
- 36 Shilov AE, Shul’pin GB. Chem. Rev. 1997; 97: 2879
- 37 Davies HM. L, Manning JR. Nature 2008; 451: 417
- 38 Huang H, Lambert TH. Angew. Chem. Int. Ed. 2021; 60: 11163
- 39 Berger F, Plutschack MB, Riegger J, Yu W, Speicher S, Ho M, Frank N, Ritter T. Nature 2019; 567: 223
- 40 Ishiyama T, Takagi J, Ishida K, Miyaura N, Anastasi NR, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 390
- 41 Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
- 42 Cheng C, Hartwig JF. J. Am. Chem. Soc. 2015; 137: 592
- 43 Genov GR, Mihai MT, Phipps RJ. In Remote C–H Bond Functionalizations: Methods and Strategies in Organic Synthesis . Maiti D, Guin S. Wiley-VCH; Weinheim: 2021: 169
- 44 Boller TM, Murphy JM, Hapke M, Ishiyama T, Miyaura N, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 14263
- 45 Oeschger R, Su B, Yu I, Ehinger C, Romero E, He S, Hartwig J. Science 2020; 368: 736
- 46 Lafrance M, Rowley CN, Woo TK, Fagnou K. J. Am. Chem. Soc. 2006; 128: 8754
- 47 Tlahuext-Aca A, Lee SY, Sakamoto S, Hartwig JF. ACS Catal. 2021; 11: 1430
- 48 Gorelsky SI, Lapointe D, Fagnou K. J. Am. Chem. Soc. 2008; 130: 10848
- 49 Deprez NR, Kalyani D, Krause A, Sanford MS. J. Am. Chem. Soc. 2006; 128: 4972
- 50 Storr TE, Greaney MF. Org. Lett. 2013; 15: 1410
- 51 Mousseau JJ, Vallée F, Lorion MM, Charette AB. J. Am. Chem. Soc. 2010; 132: 14412
- 52 Wang P, Verma P, Xia G, Shi J, Qiao JX, Tao S, Cheng PT. W, Poss MA, Farmer ME, Yeung K.-S, Yu J.-Q. Nature 2017; 551: 489
- 53 Chen H, Wedi P, Meyer T, Tavakoli G, van Gemmeren M. Angew. Chem. Int. Ed. 2018; 57: 2497
- 54 Naksomboon K, Valderas C, Gómez-Martínez M, Álvarez-Casao Y, Fernández-Ibáñez M. Á. ACS Catal. 2017; 7: 6342
- 55 Moritanl I, Fujiwara Y. Tetrahedron Lett. 1967; 8: 1119
- 56 Fujiwara Y, Moritani I, Matsuda M, Teranishi S. Tetrahedron Lett. 1968; 9: 633
- 57 Fujiwara Y, Moritani I, Danno S, Asano R, Teranishi S. J. Am. Chem. Soc. 1969; 91: 7166
- 58 Jia C, Lu W, Kitamura T, Fujiwara Y. Org. Lett. 1999; 1: 2097
- 59 Li G, Yan Y, Zhang P, Xu X, Jin Z. ACS Catal. 2021; 11: 10460
- 60 Carole WA, Colacot TJ. Chem. Eur. J. 2016; 22: 7686
- 61 Baxter RD, Sale D, Engle KM, Yu J.-Q, Blackmond DG. J. Am. Chem. Soc. 2012; 134: 4600
- 62 Zhao D, Xu P, Ritter T. Chem 2019; 5: 97
- 63 Chen H, Mondal A, Wedi P, van Gemmeren M. ACS Catal. 2019; 9: 1979
- 64 Liu L.-Y, Yeung K.-S, Yu J.-Q. Chem. Eur. J. 2019; 25: 2199
- 65 Mondal A, Chen H, Flämig L, Wedi P, van Gemmeren M. J. Am. Chem. Soc. 2019; 141: 18662
- 66 Campeau L.-C, Fagnou K. Chem. Commun. 2006; 1253
- 67 Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
- 68 Campeau L.-C, Hazari N. Organometallics 2019; 38: 3
- 69 Liu L.-Y, Qiao JX, Yeung K.-S, Ewing WR, Yu J.-Q. J. Am. Chem. Soc. 2019; 141: 14870
- 70 Wang X.-C, Gong W, Fang L.-Z, Zhu R.-Y, Li S, Engle KM, Yu J.-Q. Nature 2015; 519: 334
- 71 Dong Z, Wang J, Dong G. J. Am. Chem. Soc. 2015; 137: 5887
- 72 Shen P.-X, Wang X.-C, Wang P, Zhu R.-Y, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 11574
- 73 Liu L.-Y, Qiao JX, Yeung K.-S, Ewing WR, Yu J.-Q. Angew. Chem. Int. Ed. 2020; 59: 13831
- 74 Bayler A, Canty AJ, Ryan JH, Skelton BW, White AH. Inorg. Chem. Commun. 2000; 3: 575
- 75 Canty AJ. Dalton Trans. 2009; 10409
- 76 Canty AJ, Patel J, Rodemann T, Ryan JH, Skelton BW, White AH. Organometallics 2004; 23: 3466
- 77 Della Ca’ N, Fontana M, Motti E, Catellani M. Acc. Chem. Res. 2016; 49: 1389
- 78 Álvarez-Casao Y, van Slagmaat CA. M. R, Verzijl GK. M, Lefort L, Alsters PL, Fernández-Ibáñez M. Á. ChemCatChem 2018; 10: 2620
- 79 Funaki K, Kawai H, Sato T, Oi S. Chem. Lett. 2011; 40: 1050
- 80 Collins KD, Honeker R, Vásquez-Céspedes S, Tang D.-TD, Glorius F. Chem. Sci. 2015; 6: 1816
- 81 Li R, Jiang L, Lu W. Organometallics 2006; 25: 5973
- 82 Kawai H, Kobayashi Y, Oi S, Inoue Y. Chem. Commun. 2008; 1464
- 83 Yang S.-D, Sun C.-L, Fang Z, Li B.-J, Li Y.-Z, Shi Z.-J. Angew. Chem. Int. Ed. 2008; 47: 1473
- 84 Ball LT, Lloyd-Jones GC, Russell CA. Science 2012; 337: 1644
- 85 Ball LT, Lloyd-Jones GC, Russell CA. J. Am. Chem. Soc. 2014; 136: 254
- 86 Bay KL, Yang Y.-F, Houk KN. J. Organomet. Chem. 2018; 864: 19
- 87 Bhaskararao B, Singh S, Anand M, Verma P, Prakash P, Athira C, Malakar S, Schaefer HF, Sunoj RB. Chem. Sci. 2020; 11: 208
- 88 Lee SY, Hartwig JF. J. Am. Chem. Soc. 2016; 138: 15278
- 89 Lotz MD, Camasso NM, Canty AJ, Sanford MS. Organometallics 2017; 36: 165
- 90 Whitaker D, Burés J, Larrosa I. J. Am. Chem. Soc. 2016; 138: 8384
- 91 Yang Y.-F, Cheng G.-J, Liu P, Leow D, Sun T.-Y, Chen P, Zhang X, Yu J.-Q, Wu Y.-D, Houk KN. J. Am. Chem. Soc. 2014; 136: 344
- 92 Bhattacharya T, Dutta S, Maiti D. ACS Catal. 2021; 11: 9702
- 93 Panigrahi A, Whitaker D, Vitorica-Yrezabal IJ, Larrosa I. ACS Catal. 2020; 10: 2100
- 94 Simonetti M, Perry GJ. P, Cambeiro XC, Juliá-Hernández F, Arokianathar JN, Larrosa I. J. Am. Chem. Soc. 2016; 138: 3596
- 95 Filler R, Schure RM. J. Org. Chem. 1967; 32: 1217
- 96 Regalado EL, Kozlowski MC, Curto JM, Ritter T, Campbell MG, Mazzotti AR, Hamper BC, Spilling CD, Mannino MP, Wan L, Yu J.-Q, Liu J, Welch CJ. Org. Biomol. Chem. 2014; 12: 2161
- 97 Szabó KJ. J. Mol. Catal. A: Chem. 2010; 324: 56
- 98 Wright LA, Hope EG, Solan GA, Cross WB, Singh K. Dalton Trans. 2015; 44: 6040
- 99 Morohashi N, Iijima S, Akasaka K, Hattori T. New J. Chem. 2017; 41: 2231