Subscribe to RSS
DOI: 10.1055/s-0040-1719866
Claisen Rearrangement Triggered by Brønsted Acid Catalyzed Alkyne Alkoxylation
We are grateful for the financial support from the National Natural Science Foundation of China (22125108, 92056104 and 21772161) and from Wenzhou University.
Abstract
Over the past two decades, catalytic alkyne alkoxylation-initiated Claisen rearrangement has proven to be a practical and powerful strategy for the rapid assembly of a diverse range of structurally complex molecules. The rapid development of Claisen rearrangements triggered by transition-metal-catalyzed alkyne alkoxylation has shown great potential in the formation of carbon–carbon bonds in an atom-economic and mild way. However, metal-free alkyne alkoxylation-triggered Claisen rearrangement has seldom been exploited. Recently, Brønsted acids such as HNTf2 and HOTf have been shown to be powerful activators that promote catalytic alkyne alkoxylation/Claisen rearrangement, leading to the concise and flexible synthesis of valuable compounds with high efficiency and atom economy. Recent advances on the Brønsted acid catalyzed alkyne alkoxylation/Claisen rearrangement are introduced in this Account, in which both intramolecular and intermolecular tandem reactions are discussed.
Keywords
metal-free - Brønsted acid - Claisen rearrangement - alkynes - tandem reaction - alkoxylationPublication History
Received: 13 November 2021
Accepted after revision: 13 December 2021
Article published online:
13 January 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Gajewski JJ. Acc. Chem. Res. 1997; 30: 219
- 1b Ito H, Taguchi T. Chem. Soc. Rev. 1999; 28: 43
- 1c Hiersemann M, Abraham L. Eur. J. Org. Chem. 2002; 1461
- 1d Martín Castro AM. Chem. Rev. 2004; 104: 2939
- 1e Hiratani K, Albrecht M. Chem. Soc. Rev. 2008; 37: 2413
- 1f Ilardi EA, Stivala CE, Zakarian A. Chem. Soc. Rev. 2009; 38: 3133
- 1g Tejedor D, Méndez-Abt G, Cotos L, García-Tellado F. Chem. Soc. Rev. 2013; 42: 458
- 2a Shi C.-Y, Li L, Kang W, Zhang Y.-X, Ye L.-W. Coord. Chem. Rev. 2021; 446: 214131
- 2b Fürstner A, Davies PW. J. Am. Chem. Soc. 2005; 127: 15024
- 2c Bae HJ, Baskar B, An SE, Cheong JY, Thangadurai DT, Hwang I.-C, Rhee YH. Angew. Chem. Int. Ed. 2008; 47: 2263
- 2d Ueda M, Sato A, Ikeda Y, Miyoshi T, Naito T, Miyata O. Org. Lett. 2010; 12: 2594
- 2e Grimster NP, Wilton DA. A, Chan LK. M, Godfrey CR. A, Green C, Owen DR, Gaunt MJ. Tetrahedron 2010; 66: 6429
- 2f Ting C.-M, Wang C.-D, Chaudhuri R, Liu R.-S. Org. Lett. 2011; 13: 1702
- 2g Istrate FM, Gagosz F. Beilstein J. Org. Chem. 2011; 7: 878
- 2h Wang Y, Ye L, Zhang L. Chem. Commun. 2011; 47: 7815
- 2i Lu B, Li Y, Wang Y, Aue DH, Luo Y, Zhang L. J. Am. Chem. Soc. 2013; 135: 8512
- 2j Ketcham JM, Biannic B, Aponick A. Chem. Commun. 2013; 49: 4157
- 2k Wang Y, Liu L, Zhang L. Chem. Sci. 2013; 739
- 2l Gómez-Suárez A, Gasperini D, Vummaleti SV. C, Poater A, Cavallo L, Nolan SP. ACS Catal. 2014; 4: 2701
- 2m Barrett MJ, Davies PW, Grainger RS. Org. Biomol. Chem. 2015; 13: 8676
- 2n Zhou B, Li L, Zhu X.-Q, Yan J.-Z, Guo Y.-L, Ye L.-W. Angew. Chem. Int. Ed. 2017; 56: 4015
- 2o Zhou B, Li L, Liu X, Tan T.-D, Liu J, Ye L.-W. J. Org. Chem. 2017; 82: 10149
- 2p Li J, Lin L, Hu B, Zhou P, Huang T, Liu X, Feng X. Angew. Chem. Int. Ed. 2017; 56: 885
- 2q Liu C, Xu J, Ding L, Zhang H, Xue Y, Yang F. Org. Biomol. Chem. 2019; 17: 4435
- 2r Zhou W, Voituriez A. Org. Lett. 2021; 23: 247
- 3a Akiyama T, Mori K. Chem. Rev. 2015; 115: 9277
- 3b Wang Y.-B, Tan B. Acc. Chem. Res. 2018; 51: 534
- 3c Zhao W, Sun J. Chem. Rev. 2018; 118: 10349
- 3d Maji R, Mallojjala SC, Wheeler SE. Chem. Soc. Rev. 2018; 47: 1142
- 3e Schreyer L, Properzi R, List B. Angew. Chem. Int. Ed. 2019; 58: 12761
- 3f Chen Y.-B, Qian P.-C, Ye L.-W. Chem. Soc. Rev. 2020; 49: 8897
- 4 Li L, Zhu X.-Q, Zhang Y.-Q, Bu H.-Z, Yuan P, Chen J, Su J, Deng X, Ye L.-W. Chem. Sci. 2019; 10: 3123
- 5a Wang X.-N, Yeom H.-S, Fang L.-C, He S, Ma Z.-X, Kedrowski BL, Hsung RP. Acc. Chem. Res. 2014; 47: 560
- 5b Evano G, Theunissen C, Lecomte M. Aldrichimica Acta 2015; 48: 59
- 5c Zhou B, Tan T.-D, Zhu X.-Q, Shang M, Ye L.-W. ACS Catal. 2019; 9: 6393
- 5d Hong F.-L, Ye L.-W. Acc. Chem. Res. 2020; 53: 2003
- 5e Luo J, Chen G.-S, Chen S.-J, Yu J.-S, Li Z.-D, Liu Y.-L. ACS Catal. 2020; 10: 13978
- 5f Lynch CC, Sripada A, Wolf C. Chem. Soc. Rev. 2020; 49: 8543
- 5g Hu Y.-C, Zhao Y, Wan B, Chen Q.-A. Chem. Soc. Rev. 2021; 50: 2582
- 6 Zhang Y.-Q, Zhu X.-Q, Xu Y, Bu H.-Z, Wang J.-L, Zhai T.-Y, Zhou J.-M, Ye L.-W. Green Chem. 2019; 21: 3023
- 7a Chen P.-F, Zhou B, Wu PWang B, Ye L.-W. Angew. Chem. Int. Ed. 2021; 60: 27164
- 7b Zhou B, Zhang Y.-Q, Zhang K, Yang M.-Y, Chen Y.-B, Li Y, Peng Q, Zhu S.-F, Zhou Q.-L, Ye L.-W. Nat. Commun. 2019; 10: 3234
- 8 Mulder JA, Hsung RP, Frederick MO, Tracey MR, Zificsak CA. Org. Lett. 2002; 4: 1383
- 9 Frederick MO, Hsung RP, Lambeth RH, Mulder JA, Tracey MR. Org. Lett. 2003; 5: 2663
- 10 Peng B, Huang X, Xie L.-G, Maulide N. Angew. Chem. Int. Ed. 2014; 53: 8718
- 11 Hu L, Gui Q, Chen X, Tan Z, Zhu G. J. Org. Chem. 2016; 81: 4861
- 12 Baldassari LL, Mantovani AC, Senoner S, Maryasin B, Maulide N, Lüdtke DS. Org. Lett. 2018; 20: 5881
- 13 Kaiser D, Veiros LF, Maulide N. Adv. Synth. Catal. 2017; 359: 64
- 14 Kaldre D, Klose I, Maulide N. Science 2018; 361: 664
For recent selected reviews, see:
For a recent review, see:
For recent selected reviews, see:
For recent reviews on ynamide reactivity, see: