Subscribe to RSS
DOI: 10.1055/s-0041-1737966
Ring Forming Approaches to para-Quinones: Toward a General Diels–Alder Disconnection
This work was supported by an Australian Research Council Discovery Early Career Award for C.G.N. (DE180100462). Financial support from the University of Adelaide, Australia and the University of Georgia, USA is gratefully acknowledged.
Abstract
para-Quinones feature extensively as targets and/or intermediates throughout a number of chemical and biological subdisciplines, highlighting the importance of efficient preparative methods. This Synpacts article provides an overview of ring forming approaches to para-hydroquinones and para-benzoquinones, concluding with our recent contribution concerning the development of 2,5-bis(tert-butyldimethylsilyloxy)furans as vicinal bisketene equivalents in the Diels–Alder reaction.
1 Introduction
2 Ring Forming Approaches to para-Quinones
2.1 Hauser–Kraus Annulation
2.2 Moore–Liebeskind Rearrangement
2.3 Wulff–Dötz Reaction
2.4 Oxidative Bergman Cyclization
2.5 Diels–Alder Strategies
2.5.1 Ketene–Enol Equivalents
2.5.2 Bisketene Equivalents
3 Toward an Improved Bisketene Equivalent
4 Conclusion
Publication History
Received: 17 February 2022
Accepted after revision: 28 February 2022
Article published online:
27 June 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Marcos IS, Conde A, Moro RF, Basabe P, Diez D, Urones JG. Mini-Rev. Org. Chem. 2010; 7: 230
- 1b Sunassee SN, Davies-Coleman MT. Nat. Prod. Rep. 2012; 29: 513
- 1c Gartman JA, Tambar UK. Tetrahedron 2022; 105 DOI:
- 2a Billig E, Abatjoglou AG, Bryant DR. US 4769498 1988
- 2b Itami K, Palmgren A, Thorarensen A, Bäckvall J.-E. J. Org. Chem. 1998; 63: 6466
- 2c Son SU, Kim SB, Reingold JA, Carpenter GB, Sweigart DA. J. Am. Chem. Soc. 2005; 127: 12238
- 3a Buckle DR, Collier SJ, McLaws MD. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone. In e-EROS Encyclopedia of Reagents for Organic Synthesis. J. Wiley & Sons; Hoboken: 2005
- 3b Karasu F, Arsu N, Jockusch S, Turro NJ. J. Org. Chem. 2013; 78: 9161
- 3c Buckle DR, Ohkubo K, Fukuzumi S. Chloranil . In e-EROS Encyclopedia of Reagents for Organic Synthesis . J. Wiley & Sons; Hoboken: 2016
- 4a Layton ME, Morales CA, Shair MD. J. Am. Chem. Soc. 2002; 124: 773
- 4b Kuttruff CA, Zipse H, Trauner D. Angew. Chem. Int. Ed. 2011; 50: 1402
- 4c Pepper HP, Kuan KK. W, George JH. Org. Lett. 2012; 14: 1524
- 4d Markwell-Heys AW, George JH. Org. Biomol. Chem. 2016; 14: 5546
- 4e Lam HC, Pepper HP, Sumby CJ, George JH. Angew. Chem. Int. Ed. 2017; 56: 8532
- 5a Scott JD, Williams RM. Chem. Rev. 2002; 102: 1669
- 5b Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Pharmacol. Rev. 2004; 56: 185
- 6 For an example, see: Lin K, Chen Q, Gerhardt MR, Tong L, Kim SB, Eisenach L, Valle AW, Hardee D, Gordon RG, Aziz MJ, Marshak MP. Science 2015; 349: 1529
- 7 For a review, see: Dulo B, Phan K, Githaiga J, Raes K, De Meester S. Waste Biomass Valorization 2021; 12: 6339
- 8 Crane FL. J. Am. Coll. Nutr. 2001; 20: 591
- 9 Olson RE. Ann. Rev. Nutr. 1984; 4: 281
- 10 Weaver MG, Pettus TR. R. Synthesis of para- and ortho-Quinones, In Comprehensive Organic Synthesis II ; Elsevier: Amsterdam, 2014
- 11 For a review, see: Snieckus V. Chem. Rev. 1990; 90: 879
- 12 For a review, see: Akai S, Kita Y. Org. Prep. Proced. Int. 1998; 30: 603
- 13a Wender PA, Verma VA, Paxton TJ, Pillow TH. Acc. Chem. Res. 2008; 41: 40
- 13b Wender PA, Miller BL. Nature 2009; 460: 197
- 13c Gaich T, Baran PS. J. Org. Chem. 2010; 75: 4657
- 14 Dissanayake I, Hart JD, Becroft EC, Sumby CJ, Newton CG. J. Am. Chem. Soc. 2020; 142: 13328
- 15a Hauser FM, Rhee RP. J. Org. Chem. 1978; 43: 178
- 15b Kraus GA, Sugimoto H. Tetrahedron Lett. 1978; 19: 2263
- 16a Mal D, Pahari P. Chem. Rev. 2007; 107: 1892
- 16b de Koning CB, Georgiou KH, Michael JP, Rousseau AL, Weinreb SM. Organic Reactions, Vol. 107. Hauser–Kraus, Sammes, Staunton–Weinreb, and Tamura Annulations. Hoboken: J. Wiley & Sons. Evans P. A. 2021 5. 65.
- 17a Khanapure SP, Biehl ER. J. Nat. Prod. 1989; 52: 1357
- 17b Zhao H, Biehl E. J. Nat. Prod. 1995; 58: 1970
- 18a Liau BB, Milgram BC, Shair MD. J. Am. Chem. Soc. 2012; 134: 16765
- 18b Nicolaou KC, Chen P, Zhu S, Cai Q, Erande RD, Li R, Sun H, Pulukuri KK, Rigol S, Aujay M, Sandoval J, Gavrilyuk J. J. Am. Chem. Soc. 2017; 139: 15467
- 18c Holmbo SD, Pronin SV. J. Am. Chem. Soc. 2018; 140: 5065
- 18d Gartman JA, Tambar UK. Org. Lett. 2020; 22: 9145
- 19a Karlsson JO, Nghi VN, Foland LD, Moore HW. J. Am. Chem. Soc. 1985; 107: 3392
- 19b Perri ST, Foland LD, Decker OH. W, Moore HW. J. Org. Chem. 1986; 51: 3067
- 19c Liebeskind LS, Iyer S, Jewell CF. J. Org. Chem. 1986; 51: 3065
- 20a Moore HW, Decker OH. W. Chem. Rev. 1986; 86: 821
- 20b Namyslo JC, Kaufmann DE. Chem. Rev. 2003; 103: 1485
- 21a Harrowven DC, Pascoe DD, Demurtas D, Bourne HO. Angew. Chem. Int. Ed. 2005; 44: 1221
- 21b Knueppel D, Martin SF. Angew. Chem. Int. Ed. 2009; 48: 2569
- 21c Knueppel D, Yang J, Cheng B, Mans D, Martin SF. Tetrahedron 2015; 71: 5741
- 21d Feng J, Lei X, Guo Z, Tang Y. Angew. Chem. Int. Ed. 2017; 56: 7895
- 22a Nicolaou KC, Vassilikogiannakis G, Mägerlein W, Kranich R. Angew. Chem. Int. Ed. 2001; 40: 2482
- 22b Nicolaou KC, Vassilikogiannakis G, Mägerlein W, Kranich R. Chem. Eur. J. 2001; 7: 5359
- 23a Minatti A, Dötz KH. Top. Organomet. Chem. 2004; 13: 123
- 23b Waters ML, Wulff WD. The Synthesis of Phenols and Quinones via Fischer Carbene Complexes. In Organic Reactions, Vol. 70. Overman LE. J. Wiley & Sons; Hoboken: 2008
- 23c Fernandes RA, Kumari A, Pathare RS. Synlett 2020; 31: 403
- 24a Tanaka K, Watanabe M, Ishibashi K, Matsuyama H, Saikawa Y, Nakata M. Org. Lett. 2010; 12: 1700
- 24b Tanaka K, Matsuyama H, Watanabe M, Fujimori Y, Ishibashi K, Ozawa T, Sato T, Saikawa Y, Nakata M. J. Org. Chem. 2014; 79: 9922
- 25a Grissom JW, Gunawardena GU, Klingberg D, Huang D. Tetrahedron 1996; 52: 6453
- 25b Wang KK. Chem. Rev. 1996; 96: 207
- 26 Grissom JW, Gunawardena GU. Tetrahedron Lett. 1995; 36: 4951
- 27a Jones LH, Harwig CW, Wentworth P, Simeonov A, Wentworth AD, Py S, Ashley JA, Lerner RA, Janda KD. J. Am. Chem. Soc. 2001; 123: 3607
- 27b Jones GB, Warner PM. J. Org. Chem. 2001; 66: 8669
- 28 Goswami S, Harada K, El-Mansy MF, Lingampally R, Carter RG. Angew. Chem. Int. Ed. 2018; 57: 9117
- 29a Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002; 41: 1668
- 29b Bur S.; Padwa A. [4+2] Cycloaddition Chemistry of Substituted Furans, In Methods and Applications of Cycloaddition Reactions in Organic Syntheses; Nishiwaki N.; J. Wiley & Sons: Hoboken; 2014; Chap. 13,:
- 29c Mackay E, Sherburn M. Synthesis 2015; 47: 1
- 30 For an example, see: Huffman BJ, Chen S, Schwarz JL, Plata RE, Chin EN, Lairson LL, Houk KN, Shenvi RA. Nat. Chem. 2020; 12: 310
- 31 In most cases diene isolation was not attempted, and/or no information was provided regarding diene stability.
- 32a Tidwell TT. Eur. J. Org. Chem. 2006; 563
- 32b Mackay EG, Newton CG. Aust. J. Chem. 2016; 69: 1365
- 33 Newland MJ, Rea GJ, Thüner LP, Henderson AP, Golding BT, Rickard AR, Barnes I, Wenger J. Phys. Chem. Chem. Phys. 2019; 21: 1160 ; and references cited therein
- 34 Such an intermediate has been proposed within the following study: Fernández-Zertuche M, López-Cortina S, Meza-Aviña ME, Ordóñez M, Ramírez-Solís A. ARKIVOC 2003; 89
- 35a Contreras L, Slemon CE, MacLean DB. Tetrahedron Lett. 1978; 19: 4237
- 35b Pollart DJ, Rickborn B. J. Org. Chem. 1987; 52: 792
- 35c Hosoya T, Takashiro E, Matsumoto T, Suzuki K. J. Am. Chem. Soc. 1994; 116: 1004
- 35d Myers AG, Tom NJ, Fraley ME, Cohen SB, Madar DJ. J. Am. Chem. Soc. 1997; 119: 6072
- 35e Padwa A, Straub CS. J. Org. Chem. 2002; 68: 227
- 35f Collis GE, Burrell AK. Tetrahedron Lett. 2005; 46: 3653
- 35g Hamura T, Arisawa T, Matsumoto T, Suzuki K. Angew. Chem. Int. Ed. 2006; 45: 6842
- 35h Axelrod A, Eliasen AM, Chin MR, Zlotkowski K, Siegel D. Angew. Chem. Int. Ed. 2012; 52: 3421
- 36 Allen AD, Ma J, McAllister MA, Tidwell TT, Zhao D.-C. Acc. Chem. Res. 1995; 28: 265 ; and references cited therein
- 37a Brownbridge P, Chan T.-H. Tetrahedron Lett. 1980; 21: 3423
- 37b Ng W, Wege D. Tetrahedron Lett. 1996; 37: 6797
- 38 Rüttimann A, Lorenz P. Helv. Chim. Acta 1990; 73: 790
- 39a van Liemt WB. S, Steggerda WF, Esmeijer R, Lugtenburg J. Recl. Trav. Chim. Pays-Bas 1994; 113: 153
- 39b Samoilova RI, van Liemt W, Steggerda WF, Lugtenburg J, Hoff AJ, Spoyalov AP, Tyryshkin AM, Gritzan NP, Tsvetkov YD. J. Chem. Soc., Perkin Trans. 2 1994; 609
- 39c Boullais C, Breton J, Nabedryk E, Mioskowski C. Tetrahedron 1997; 53: 2505
- 39d Falcou A, Boullais C. J. Labelled Compd. Radiopharm. 1998; 41: 657
- 40a Troll T, Schmid K. Tetrahedron Lett. 1984; 25: 2981
- 40b Taguchi T, Hosoda A, Tomizawa G, Kawara A, Masuo T, Suda Y, Nakajima M, Kobayashi Y. Chem. Pharm. Bull. 1987; 35: 909
- 41a Horvath KL, Magann NL, Sowden MJ, Gardiner MG, Sherburn MS. J. Am. Chem. Soc. 2019; 141: 19746
- 41b Westley E, Sowden MJ, Magann NL, Horvath KL, Connor KP. E, Sherburn MS. J. Am. Chem. Soc. 2022; 144: 977
- 42 Garrido-Mesa N, Zarzuelo A, Gálvez J. Br. J. Pharmacol. 2013; 169: 337
- 43a Hopf H, Sherburn MS. Angew. Chem. Int. Ed. 2012; 51: 2298
- 43b Sherburn MS. Acc. Chem. Res. 2015; 48: 1961
- 43c Newton CG, Sherburn MS. Cross-Conjugation in Synthesis . In Cross Conjugation . Hopf H, Sherburn MS. Wiley-VCH; Weinheim: 2016
- 44a Cergol KM, Newton CG, Lawrence AL, Willis AC, Paddon-Row MN, Sherburn MS. Angew. Chem. Int. Ed. 2011; 50: 10425
- 44b Newton CG, Drew SL, Lawrence AL, Willis AC, Paddon-Row MN, Sherburn MS. Nat. Chem. 2015; 7: 82
- 44c Newton CG, Sherburn MS. Nat. Prod. Rep. 2015; 32: 865
- 44d Tan SM, Willis AC, Paddon-Row MN, Sherburn MS. Angew. Chem. Int. Ed. 2016; 55: 3081
- 44e Horvath KL, Newton CG, Roper KA, Ward JS, Sherburn MS. Chem. Eur. J. 2019; 25: 4072
- 45 Fallon T, Willis AC, Paddon-Row MN, Sherburn MS. J. Org. Chem. 2014; 79: 3185
For reviews, see:
For examples, see:
For examples, see:
For examples, see:
For reviews, see:
For leading references on step-economy and efficient synthesis, see:
For seminal reports, see:
For reviews, see:
An important exception includes the use of arynes as dienophiles. For examples, see:
For examples, see:
For seminal reports, see:
For reviews, see:
For examples, see:
For reviews, see:
For reviews, see:
For reviews, see:
For reviews, see:
For examples, see:
The same Diels–Alder strategy has been used for the synthesis of various ubiquinone derivatives:
Adapted from stability studies developed by Sherburn and co-workers:
For reviews, see:
For examples, see: