Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett
DOI: 10.1055/s-0041-1738436
DOI: 10.1055/s-0041-1738436
cluster
Natural Product Synthesis
Synthetic Studies Toward Daphnezomines A and B
Financial Support was provided by Lanzhou University, National Natural Science Foundation of China (21901094 and 22071089).
Abstract
Synthetic studies toward daphnezomines A and B, members of Daphniphyllum alkaloid group with a rare azaadamantane core structure, are reported. The tricyclic carbon skeleton with two contiguous quaternary carbon centers was synthesized in nine steps from (R)-piperitone. An intramolecular Tsuji–Trost reaction was used as a key reaction for the assembly of the skeleton.
Key words
Daphniphyllum alkaloids - daphnezomines - total synthesis - natural products - Tsuji–Trost reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0041-1738436.
- Supporting Information
Publication History
Received: 26 February 2023
Accepted after revision: 21 March 2023
Article published online:
04 May 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Kobayashi J, Kubota T. Nat. Prod. Rep. 2009; 26: 936
- 1b Dong M, Zhang M.-L, Shi Q.-W, Gu Y.-C, Kiyota H. Curr. Org. Chem. 2009; 13: 646
- 1c Yang S.-p, Yue J.-m. Acta Pharmacol. Sin. 2012; 33: 1147
- 1d Wu H, Zhang X, Ding L, Chen S, Yang J, Xu X. Planta Med. 2013; 79: 1589
- 1e Liang X, Yang X.-Z, Chen L, Jiang S, Chen Y.-D, Deng Q.-Y, Chen X.-G, Yuan J.-Q. Med. Chem. Res. 2021; 30: 1
- 2a Kang B, Jakubec P, Dixon DJ. Nat. Prod. Rep. 2014; 31: 550
- 2b Chattopadhyay AK, Hanessian S. Chem. Rev. 2017; 117: 4104
- 3a Heathcock CH, Davidsen SK, Mills S, Sanner MA. J. Am. Chem. Soc. 1986; 108: 5650
- 3b Ruggeri RB, Hansen MM, Heathcock CH. J. Am. Chem. Soc. 1988; 110: 8734
- 3c Ruggeri RB, McClure KF, Heathcock CH. J. Am. Chem. Soc. 1989; 111: 1530
- 3d Ruggeri RB, Heathcock CH. J. Org. Chem. 1990; 55: 3714
- 3e Stafford JA, Heathcock CH. J. Org. Chem. 1990; 55: 5433
- 3f Heathcock CH, Stafford JA, Clark DL. J. Org. Chem. 1992; 57: 2575
- 3g Heathcock CH, Kath JC, Ruggeri RB. J. Org. Chem. 1995; 60: 1120
- 3h Piettre S, Heathcock CH. Science 1990; 248: 1532
- 4 Weiss ME, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 11501
- 5a Lu Z, Li Y, Deng J, Li A. Nat. Chem. 2013; 5: 679
- 5b Li J, Zhang W, Zhang F, Chen Y, Li A. J. Am. Chem. Soc. 2017; 139: 14893
- 5c Chen Y, Zhang W, Ren L, Li J, Li A. Angew. Chem. Int. Ed. 2018; 57: 952
- 5d Zhang W, Ding M, Li J, Guo Z, Lu M, Chen Y, Liu L, Shen Y.-H, Li A. J. Am. Chem. Soc. 2018; 140: 4227
- 5e Zhang W, Lu M, Ren L, Zhang X, Yang P, Li A. ChemRxiv 2022; preprint
- 6a Shvartsbart A, Smith AB. III. J. Am. Chem. Soc. 2014; 136: 870
- 6b Shvartsbart A, Smith AB. III. J. Am. Chem. Soc. 2015; 137: 3510
- 7 Yamada R, Adachi Y, Yokoshima S, Fukuyama T. Angew. Chem. Int. Ed. 2016; 55: 6067
- 8 Chattopadhyay AK, Ly VL, Jakkepally S, Berger G, Hanessian S. Angew. Chem. Int. Ed. 2016; 55: 2577
- 9 Shi H, Michaelides IN, Darses B, Jakubec P, Nguyen QN. N, Paton RS, Dixon DJ. J. Am. Chem. Soc. 2017; 139: 17755
- 10 Chen X, Zhang H.-J, Yang X, Lv H, Shao X, Tao C, Wang H, Cheng B, Li Y, Guo J, Zhang J, Zhai H. Angew. Chem. Int. Ed. 2018; 57: 947
- 11a Xu B, Wang B, Xun W, Qiu FG. Angew. Chem. Int. Ed. 2019; 58: 5754
- 11b Wang B, Xu B, Xun W, Guo Y, Zhang J, Qiu FG. Angew. Chem. Int. Ed. 2021; 60: 9439
- 12a Chen Y, Hu J, Guo L.-D, Zhong W, Ning C, Xu J. Angew. Chem. Int. Ed. 2019; 58: 7390
- 12b Guo L.-D, Hou J, Tu W, Zhang Y, Zhang Y, Chen L, Xu J. J. Am. Chem. Soc. 2019; 141: 11713
- 12c Guo L.-D, Hu J, Zhang Y, Tu W, Zhang Y, Pu F, Xu J. J. Am. Chem. Soc. 2019; 141: 13043
- 12d Guo L.-D, Zhang Y, Hu J, Ning C, Fu H, Chen Y, Xu J. Nat. Commun. 2020; 11: 3538
- 12e Guo L.-D, Chen Y, Xu J. Acc. Chem. Res. 2020; 53: 2726
- 12f Zhang Y, Chen Y, Song M, Tan B, Jiang Y, Yan C, Jiang Y, Hu X, Zhang C, Chen W, Xu J. J. Am. Chem. Soc. 2022; 144: 16042
- 13 Zhong J, Chen K, Qiu Y, He H, Gao S. Org. Lett. 2019; 21: 3741
- 14a Hugelshofer CL, Palani V, Sarpong R. J. Am. Chem. Soc. 2019; 141: 8431
- 14b Hugelshofer CL, Palani V, Sarpong R. J. Org. Chem. 2019; 84: 14069
- 15 Xu G, Wu J, Li L, Lu Y, Li C. J. Am. Chem. Soc. 2020; 142: 15240
- 16 Cao M.-Y, Ma B.-J, Gu Q.-X, Fu B, Lu H.-H. J. Am. Chem. Soc. 2022; 144: 5750
- 17 Li L.-X, Min L, Yao T.-B, Ji S.-X, Qiao C, Tian P.-L, Sun J, Li C.-C. J. Am. Chem. Soc. 2022; 144: 18823
- 18 Morita H, Yoshida N, Kobayashi J. J. Org. Chem. 1999; 64: 7208
- 19 Zhang Y, Di Y.-T, Mu S.-Z, Li C.-S, Zhang Q, Tan C.-J, Zhang Z, Fang X, Hao X.-J. J. Nat. Prod. 2001; 72: 1325
- 20 Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
- 21 Kamatani A, Overman LE. Org. Lett. 2001; 3: 1229
- 22 Moreno-Dorado FJ, Guerra FM, Manzano FL, Aladro FJ, Jorge ZD, Massanet GM. Tetrahedron Lett. 2003; 44: 6691
- 23 Grieco PA, Wang C.-LJ, Majetich G. J. Org. Chem. 1976; 41: 726
- 24 Bian M, Wang Z, Xiong X, Sun Y, Matera C, Nicolaou KC, Li A. J. Am. Chem. Soc. 2012; 134: 8078
- 25 Aldehyde 14 K2CO3 (6.3 mg, 0.0458 mmol, 1.5 equiv) and Pd(PPh3)4 (3.5 mg, 0.00305 mmol, 0.1 equiv) were sequentially added to a solution of enol 13 (11.0 mg, 0.0305 mmol, 1.0 equiv) in DMSO (0.3 mL) at 23 °C. The resultant mixture was heated to 60 °C and stirred at 60 °C for 3 h, then cooled to 23 °C. The reaction was quenched with sat. aq NaHCO3 (1 mL), and the mixture was extracted with EtOAc (3 × 3 mL). The combined organic phases were washed with brine (1 mL), dried (MgSO4), filtered, and concentrated. The residue was purified by flash column chromatography [silica gel, EtOAc–PE (1:100 → 1:60)] to give a white solid; yield: 6.2 mg (68%); Rf = 0.75 (silica gel, EtOAc–PE, 1:20); [α]D 11.5 +8.5 (c = 0.5, CHCl3). IR (film): 2930, 2872, 1723, 1692, 1385, 1197, 1128, 1091 cm–1. 1H NMR (400 MHz, CDCl3): δ = 9.98 (d, J = 1.3 Hz, 1 H), 5.57 (dd, J = 5.0, 2.4 Hz, 1 H), 4.81 (d, J = 2.2 Hz, 1 H), 4.66 (d, J = 1.9 Hz, 1 H), 3.34 (d, J = 15.5 Hz, 1 H), 3.13 (s, 1 H), 2.93 (d, J = 15.9 Hz, 1 H), 2.69 (td, J = 13.8, 4.5 Hz, 1 H), 2.49–2.39 (m, 1 H), 2.30–2.19 (m, 1 H), 2.11–2.02 (m, 1 H), 2.01–1.85 (m, 2 H), 1.82–1.70 (m, 1 H), 1.70–1.63 (m, 1 H), 1.50–1.41 (m, 1 H), 1.41–1.32 (m, 1 H), 1.32–1.24 (m, 2 H), 1.12 (s, 3 H), 0.97 (d, J = 6.8 Hz, 3 H), 0.92 (d, J = 6.8 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 212.24, 203.79, 149.74, 133.92, 121.95, 108.52, 68.19, 51.11, 46.88, 40.59, 39.93, 33.60, 26.07, 25.04, 24.69, 24.30, 22.33, 21.33, 21.16, 18.51. HRMS (ESI): m/z [M + H]+ calcd for C20H29O2: 301.2162; found: 301.2159.
- 26 CCDC 2243631 contains the supplementary crystallographic data for compound 14. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures