RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2023; 34(12): 1519-1523
DOI: 10.1055/s-0042-1751399
DOI: 10.1055/s-0042-1751399
cluster
Special Issue Honoring Masahiro Murakami’s Contributions to Science
Enantioselective Synthesis of α-Chiral Amides by Catalytic Hydrogenation with Iridium N,P-Complexes
The authors thank the Swedish Research Council (VR), the Knut and Alice Wallenberg foundation (KAW 2016:0072 & KAW 2018:0066) and the Olle Engkvists Stiftelse for their financial support.
Abstract
The catalytic asymmetric hydrogenation of olefins constitutes a powerful method for the preparation of chiral compounds. A series of prochiral unsaturated amides were efficiently reduced with high enantioselectivities by means of an iridium N,P-complex-catalyzed hydrogenation. Its application in the synthesis of fenpropidin and the possibility of using isomeric mixtures of starting materials are attractive features of the method.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751399.
- Supporting Information
Publikationsverlauf
Eingereicht: 30. Oktober 2022
Angenommen nach Revision: 30. November 2022
Artikel online veröffentlicht:
22. Dezember 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Nazari A, Heravi MM, Zadsirjan V. J. Organomet. Chem. 2021; 932: 121629
- 1b Heravi MM, Zadsirjan V, Farajpour B. RSC Adv. 2016; 6: 30498
- 1c Diaz-Muñoz G, Miranda IL, Sartori SK, de Rezende DC, Nogueira Diaz MA. Chirality 2019; 31: 776
- 2 Oh B.-H. Expert Opin. Pharmacother. 2007; 8: 2839
- 3 Chirumamilla RR, Marchant R, Nigam P. J. Chem. Technol. Biotechnol. 2001; 76: 123
- 4 Gayke M, Narode H, Eppa G, Bhosale RS, Yadav JS. ACS Omega 2022; 7: 2486
- 5 Narczyk A, Mrozowicz M, Stecko S. Org. Biomol. Chem. 2019; 17: 2770
- 6a Lanigan RM, Karaluka V, Sabatini MT, Starkov P, Badland M, Boulton L, Sheppard TM. Chem. Commun. 2016; 52: 8846
- 6b Sabatini MT, Boulton LT, Sheppard TD. Sci. Adv. 2017; 3: e1701028
- 6c Sabatini MT, Karaluka V, Lanigan RM, Boulton LT, Badland M, Sheppard TD. Chem. Eur. J. 2018; 24: 7033
- 7a Evans DA, Bartroli J, Shih TL. J. Am. Chem. Soc. 1981; 103: 2127
- 7b Chouhan M, Sharma R, Nair VA. Org. Lett. 2012; 14: 5672
- 7c Zhang Z, Collum DB. J. Org. Chem. 2017; 82: 7595
- 8a De Rycke N, St Denis JD, Hughes JM. E, Rosadiuk KA, Gleason JL. Synlett 2014; 2802
- 8b Ye P, Liu X, Wang G, Liu L. Chin. Chem. Lett. 2021; 32: 1237
- 8c Tong X, Schneck F, Fu GC. J. Am. Chem. Soc. 2022; 144: 14856
- 9a Ohtsuka Y, Ikeno T, Yamada T. Tetrahedron: Asymmetry 2003; 14: 967
- 9b Liu Y, Mao Y, Hu Y, Gui J, Wang L, Wang W, Zhang S. Adv. Synth. Catal. 2019; 361: 1554
- 10a Cui X, Burgess K. Chem. Rev. 2005; 105: 3272
- 10b Roseblade SJ, Pfaltz A. Acc. Chem. Res. 2007; 40: 1402
- 10c Minnaard AJ, Feringa BL, Lefort L, de Vries JG. Acc. Chem. Res. 2007; 40: 1267
- 10d Verendel JJ, Pàmies O, Diéguez M, Andersson PG. Chem. Rev. 2014; 114: 2130
- 10e Cabré A, Verdaguer X, Riera A. Chem. Rev. 2022; 122: 269
- 10f Peters BB. C, Andersson PG. J. Am. Chem. Soc. 2022; 144: 16252
- 11a Chung JY. L, Zhao D, Hughes DL, McNamara JM, Grabowski EJ. J, Reider PJ. Tetrahedron Lett. 1995; 36: 7379
- 11b Li P, Hu X, Dong X.-Q, Zhang X. Chem. Commun. 2016; 52: 11677
- 11c Han Z, Li P, Zhang Z, Chen C, Wang Q, Dong X.-Q, Zhang X. ACS Catal. 2016; 6: 6214
- 11d Wen J, Jiang J, Zhang X. Org. Lett. 2016; 18: 4451
- 11e Huang Y, Li P, Dong X.-Q, Zhang X. Org. Biomol. Chem. 2018; 16: 8819
- 11f Yin C, Yang T, Pan Y, Wen J, Zhang X. Org. Lett. 2020; 22: 920
- 11g Yang J, Li X, You C, Li S, Guan Y.-Q, Lv H, Zhang X. Org. Biomol. Chem. 2020; 18: 856
- 11h Hu T, Lückemeier L, Daniliuc C, Glorius F. Angew. Chem. Int. Ed. 2021; 60: 23193
- 11i Greszler SN, Zhao G, Shelat B, Voight EA. Org. Lett. 2022; 24: 7305
- 12 Lu W.-J, Hou X.-L. Adv. Synth. Catal. 2009; 351: 1224
- 13 Shang J, Han Z, Li Y, Wang Z, Ding K. Chem. Commun. 2012; 48: 5172
- 14a Yue T.-Y, Nugent WA. J. Am. Chem. Soc. 2002; 124: 13692
- 14b Zhou J, Ogle JW, Fan Y, Banphavichit V, Burgess K. Chem. Eur. J. 2007; 13: 7162
- 14c Tian F, Yao D, Liu Y, Xie F, Zhang W. Adv. Synth. Catal. 2010; 352: 1841
- 14d Metallinos C, Van Belle L. J. Organomet. Chem. 2011; 696: 141
- 14e Liu Y, Yao D, Li K, Tian F, Xie F, Zhang W. Tetrahedron 2011; 67: 8445
- 14f Liu Y, Zhang W. Angew. Chem. Int. Ed. 2013; 52: 2203
- 14g Liu X, Han Z, Wang Z, Ding K. Angew. Chem. Int. Ed. 2014; 53: 1978
- 14h Liu Y, Gridnev ID, Zhang W. Angew. Chem. Int. Ed. 2014; 53: 1901
- 14i Margalef J, Caldentey X, Karlsson EA, Coll M, Mazuela J, Pàmies O, Diéguez M, Pericàs MA. Chem. Eur. J. 2014; 20: 12201
- 14j Li Q, Wan P, He Y, Zhou Y, Li L, Chen B, Duan K, Cao R, Zhou Z, Qiu L. Asian J. Org. Chem. 2014; 3: 774
- 14k Borràs C, Biosca M, Pàmies O, Diéguez M. Organometallics 2015; 34: 5321
- 14l Biosca M, Coll M, Lagarde F, Brémond E, Routaboul L, Manoury E, Pàmies O, Poli R, Diéguez M. Tetrahedron 2016; 72: 2623
- 14m Biosca M, Magre M, Coll M, Pàmies O, Diéguez M. Adv. Synth. Catal. 2017; 359: 2801
- 14n Xia J, Nie Y, Yang G, Liu Y, Gridnev ID, Zhang W. Chin. J. Chem. 2018; 36: 612
- 14o Biosca M, Magre M, Pàmies O, Diéguez M. ACS Catal. 2018; 8: 10316
- 14p Margalef J, Borràs C, Alegre S, Alberico E, Pàmies O, Diéguez M. ChemCatChem 2019; 11: 2142
- 14q Biosca M, Pàmies O, Diéguez M. J. Org. Chem. 2019; 84: 8259
- 14r Margalef J, Biosca M, de la Cruz-Sánches P, Caldentey X, Rodríguez-Escrich C, Pàmies O, Pericàs MA, Diéguez M. Adv. Synth. Catal. 2021; 363: 4561
- 14s Faiges J, Borràs C, Pastor IM, Pàmies O, Besora M, Diéguez M. Organometallics 2021; 40: 3424
- 14t Nie Y, Li J, Yan J, Yuan Q, Zhang W. Org. Lett. 2021; 23: 5373
- 14u Ye X.-Y, Liang Z.-Q, Jin C, Lang Q.-W, Chen G.-Q, Zhang X. Chem. Commun. 2021; 57: 195
- 14v Nie Y, Li J, Yuan Q, Zhang W. Chin. J. Chem. 2022; 40: 819
- 15 The five-membered cyclic analogue [(E)-3-benzylidenepyrrolidin-2-one] was found to be unreactive under these reaction conditions.
- 16 Massaro L, Zheng J, Margarita C, Andersson PG. Chem. Soc. Rev. 2020; 49: 2504
- 17a Yang J, Massaro L, Krajangsri S, Singh T, Su H, Silvi E, Ponra S, Eriksson L, Ahlquist MS. G, Andersson PG. J. Am. Chem. Soc. 2021; 143: 21594
- 17b Peters BB. C, Zheng J, Birke N, Singh T, Andersson PG. Nat. Commun. 2022; 13: 361
- 17c Yang J, Ponra S, Li X, Peters BB. C, Massaro L, Zhou T, Andersson PG. Chem. Sci. 2022; 13: 8590
- 18 Hao H.-Y, Lou S.-J, Wang S, Zhou K, Wu Q.-Z, Mao Y.-J, Xu Z.-Y, Xu D.-Q. Chem. Commun. 2021; 57: 8055
- 19 α,β-Unsaturated Amides 1; General Procedure The appropriate α,β-unsaturated carboxylic acid (10.0 mmol, 1.00 equiv) was refluxed in SOCl2 (5 mL) for 1 h, after which excess SOCl2 was evaporated in vacuo. The resulting acyl chloride was redissolved in anhydrous CH2Cl2 (20 mL), and the solution was cooled to 0 °C. The appropriate amine (20.0 mmol, 2.00 equiv) and Et3N (5.60 mL, 40.0 mmol, 4.00 equiv) were added, and the mixture was stirred overnight at room temperature. Sat. aq NH4Cl (20 mL) was then added to quench the reactants, and the mixture was extracted with Et2O (3 × 20 mL). The combined organic phases were washed with brine (20 mL), dried (Na2SO4), and evaporated to dryness in vacuo to give the crude product. This was purified by column chromatography [silica gel, pentane–Et2O (60:40)] to give the desired α,β-unsaturated amide. This was filtered over basic Al2O3, eluting with pentane–Et2O (60:40), immediately before hydrogenation.
- 20 4-[(2E)-2-methyl-3-phenylprop-2-enoyl]morpholine (1b) Synthesized, by following the general procedure, from (2E)-2-methyl-3-phenylacrylic acid (0.81 g, 5.0 mmol), morpholine (0.87 mL, 10.0 mmol), and Et3N (2.8 mL, 20.0 mmol) as a colorless oil; yield: 0.94 g (4.1 mmol, 82%). 1H NMR (400 MHz, CDCl3): δ = 7.41–7.27 (m, 5 H), 6.54 (q, J = 1.7 Hz, 1 H), 3.75–3.69 (m, 4 H), 3.66 (m, 4 H), 2.11 (d, J = 1.6 Hz, 3 H). The spectroscopic data were in agreement with the reported values.23a
- 21 Asymmetric Hydrogenation of α,β-Unsaturated Amides An oven-dried vial was charged with the appropriate unsaturated amide (0.1 mmol, 1.0 equiv) and Ir-N,P catalyst (1.0 mol%). Freshly distilled toluene (0.5 mL) and a magnetic stirring bar were added, and the vial was placed in a high-pressure hydrogenation apparatus. The reactor was purged three times with Ar and three times with H2, then pressurized with H2 (10 bar). The mixture was stirred at rt for 16 h before the H2 pressure was released and the solvent was removed under reduced pressure. The residue was purified by flash chromatography [silica gel, pentane–Et2O (25:75)] to give the chiral alkane. The enantioselectivity was determined by GC or SFC analysis on a chiral stationary phase. The corresponding racemic product, used for comparison, was prepared on a 0.05 mmol scale by using Pd/C or a racemic Ir catalyst, following the same hydrogenation procedure. The absolute configuration was determined by comparing the sign of the optical rotation with the reported value.
- 22 4-(2-Methyl-3-phenylpropanoyl)morpholine (2b) Prepared, by following the general procedure, from 1b (23.1 mg, 0.1 mmol) in the presence of catalyst F as a colorless oil; yield: 23.1 mg (0.99 mmol, 99%); [α]D 26 +35.0 (c 0.1 M, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.32–7.24 (m, 3 H), 7.18–7.13 (m, 2 H), 3.74–3.54 (m, 2 H), 3.50–3.41 (m, 3 H), 3.35–3.25 (m, 1 H), 3.20–3.10 (m, 1 H), 3.05–3.00 (m, 1 H), 3.00–2.89 (m, 2 H), 2.75–2.64 (m, 1 H), 1.18 (d, J = 6.4 Hz, 3 H). The spectroscopic data were in agreement with the reported values.23b