RSS-Feed abonnieren
DOI: 10.1055/s-0042-1751403
Cascade Processes Merging Chemical and Enzyme Catalysis
We would like to thank the Agencia Estatal de Investigación (AEI), the Ministerio de Ciencia e Innovación (Ministry of Science and Innovation, MCIN), and the EU for the financial support (PID2020-113351RA-100/AEI/10.13039/501100011033 and TED2021-130803B-I00 MCIN/AEI /10.13039/501100011033 NextGenerationEU/PRTR). J.M-S also thanks the Fundación Agencia Aragonesa para la Investigación y el Desarrollo (Aragonese Foundation for Research & Development, ARAID) for personal funding.
Dedicated to Prof. Vicente Gotor on the occasion of his retirement
Abstract
Cascade processes are an attractive strategy to rapidly build molecular complexity and circumvent the need to isolate reaction intermediates, providing higher efficiencies into synthetic routes with lower environmental toll. We have recently developed a new method to synthesise chiral 1,4-nitro alcohols by sequentially combining three transformations in the same reaction vessel via asymmetric C–C bond formation using a chiral thiourea catalyst and a bioreduction process as key steps.
1 Introduction
2 A Chemoenzymatic Cascade to Make Chiral 1,4-Nitro Alcohols
3 Conclusions and Perspectives
Key words
biocatalysis - organocatalysis - chemoenzymatic cascades - asymmetric synthesis - one-pot - multi-stepPublikationsverlauf
Eingereicht: 23. November 2022
Angenommen nach Revision: 09. Dezember 2022
Artikel online veröffentlicht:
10. Januar 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Yi D, Bayer T, Badenhorst CP. S, Wu S, Doerr M, Höhne M, Bornscheuer UT. Chem. Soc. Rev. 2021; 50: 8003
- 2 Schrittwieser JH, Velikogne S, Hall M, Kroutil W. Chem. Rev. 2018; 118: 270
- 3 Ascaso-Alegre C, Mangas-Sánchez J. Eur. J. Org. Chem. 2022; e202200093
- 4 Rudroff F, Mihovilovic MD, Gröger H, Snajdrova R, Iding H, Bornscheuer UT. Nat. Catal. 2018; 1: 12
- 5 Liu Y, Liu P, Gao S, Wang Z, Luan P, González-Sabín J, Jiang Y. Chem. Eng. J. 2021; 420: 127659
- 6 Millet R, Träff AM, Petrus ML, Bäckvall JE. J. Am. Chem. Soc. 2010; 132: 15182
- 7 Simon RC, Busto E, Schrittwieser JH, Sattler JH, Pietruszka J, Faber K, Kroutil W. Chem. Commun. 2014; 50: 15669
- 8 Baer K, Kraußer M, Burda E, Hummel W, Berkessel A, Gröger H. Angew. Chem. Int. Ed. 2009; 48: 9355
- 9 Rulli G, Duangdee N, Baer K, Hummel W, Berkessel A, Gröger H. Angew. Chem. Int. Ed. 2011; 50: 7944
- 10 Schober L, Tonin F, Hanefeld U, Gröger H. Eur. J. Org. Chem. 2022; e202101035
- 11 Suljic S, Pietruszka J, Worgull D. Adv. Synth. Catal. 2015; 357: 1822
- 12 Wang Y, Wang C, Cheng Q, Su Y, Li H, Xiao R, Tan C, Liu G. Green Chem. 2021; 23: 7773
- 13 Ascaso-Alegre C, Herrera RP, Mangas-Sánchez J. Angew. Chem. Int. Ed. 2022; 61: 1
- 14 Mei K, Jin M, Zhang S, Li P, Liu W, Chen X, Xue F, Duan W, Wang W. Org. Lett. 2009; 11: 2864
- 15 Rufino VC, Pliego JR. Asian J. Org. Chem. 2021; 10: 1472
- 16 Zhang H, Chuan Y, Li Z, Peng Y. Adv. Synth. Catal. 2009; 351: 2288
- 17 Cao CL, Ye MC, Sun XL, Tang Y. Org. Lett. 2006; 8: 2901
- 18 Cao YJ, Lai YY, Wang X, Li YJ, Xiao WJ. Tetrahedron Lett. 2007; 48: 21
- 19 Huffman MA, Fryszkowska A, Alvizo O, Borra-Garske M, Campos KR, Canada KA, Devine PN, Duan D, Forstater JH, Grosser ST, Halsey HM, Hughes GJ, Jo J, Joyce LA, Kolev JN, Liang J, Maloney KM, Mann BF, Marshall NM, McLaughlin M, Moore JC, Murphy GS, Nawrat CC, Nazor J, Novick S, Patel NR, Rodriguez-Granillo A, Robaire SA, Sherer EC, Truppo MD, Whittaker AM, Verma D, Xiao L, Xu Y, Yang H. Science 2019; 366: 1255
- 20 Özgen FF, Runda ME, Schmidt S. ChemBioChem 2021; 22: 790
- 21 Peñafiel I, Dryfe RA. W, Turner NJ, Greaney MF. ChemCatChem 2021; 13: 864