Synlett 2023; 34(20): 2486-2490
DOI: 10.1055/s-0042-1751474
cluster
Special Issue Dedicated to Prof. Hisashi Yamamoto

Palladium-Catalyzed Ring Opening of Cyclobutanones with Carbon- and Heteroatom-Centered Nucleophiles

Yusuke Ano
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
,
Daichi Takahashi
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
,
Kazumune Yo
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
,
Ryosuke Nagamune
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
,
Naoto Chatani
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
b   Research Center for Environmental Preservation, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan
› Author Affiliations
This work was supported by a Grant-in-Aid for Early-Career Scientists (18K14218 to Y.A.), a Grant-in-Aid for Scientific Research(C) (22K05113 to Y.A.), and a Grant-in-Aid for Specially Promoted Research (17H06091 to N.C.) from JSPS.


Dedicated to Professor Hisashi Yamamoto for his 80th birthday.

Abstract

The transformation of cyclobutanones into acyclic carbonyl compounds through a Pd-catalyzed C–C bond cleavage is reported. The use of an N-heterocyclic carbene ligand efficiently promoted the ring opening and functionalization of various cyclobutanones, not only with alcohols, but also with N-centered nucleophiles, such as aniline or amide derivatives. Cyclobutanones were also found to react with arylboronic esters, resulting in the production of acyclic aryl ketones.

Supporting Information



Publication History

Received: 29 April 2023

Accepted after revision: 30 May 2023

Article published online:
06 July 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For selected general reviews regarding the cleavage of C–C σ-bonds, see:
    • 1a Marek I, Masarwa A, Delaye P.-O, Leibeling M. Angew. Chem. Int. Ed. 2015; 54: 414
    • 1b Souillart L, Cramer N. Chem. Rev. 2015; 115: 9410
    • 1c Murakami M, Ishida N. J. Am. Chem. Soc. 2016; 138: 13759
    • 1d Chen P.-h, Billett BA, Tsukamoto T, Dong G. ACS Catal. 2017; 7: 1340
    • 1e Song F, Gou T, Wang B.-Q, Shi Z.-J. Chem. Soc. Rev. 2018; 47: 7078
    • 1f Morcillo SP. Angew. Chem. Int. Ed. 2019; 58: 14044
    • 1g Wang B, Perea MA, Sarpong R. Angew. Chem. Int. Ed. 2020; 59: 18898
    • 1h Lu H, Yu T.-Y, Xu P.-F, Wei H. Chem. Rev. 2021; 121: 365

      For selected recent reviews regarding C–C bond activation in small carbocycles, see:
    • 2a Sokolova OO, Bower JF. Chem. Rev. 2021; 121: 80
    • 2b Pirenne V, Muriel B, Waser J. Chem. Rev. 2021; 121: 227
    • 2c Nanda T, Fastheem M, Linda A, Pati BV, Banjare SK, Biswal P, Ravikumar PC. ACS Catal. 2022; 12: 13247

      For selected reviews, see:
    • 3a Deprés J.-P, Delair P, Poisson J.-F, Kanazawa A, Greene AE. Acc. Chem. Res. 2016; 49: 252
    • 3b Shaw MH, Bower JF. Chem. Commun. 2016; 52: 10817
    • 3c Chen P.-h, Dong G. Chem. Eur. J. 2016; 22: 18290
    • 3d Sietmann J, Wahl JM. Angew. Chem. Int. Ed. 2020; 59: 6964
    • 3e Murakami M, Ishida N. Chem. Rev. 2021; 121: 264
    • 3f Guin S, Majee D, Samanta S. Asian J. Org. Chem. 2021; 10: 1595
    • 3g Xue Y, Dong G. Acc. Chem. Res. 2022; 55: 2341

      For selected examples of transition-metal-catalyzed transformations of cyclobutanone oxime derivatives, see:
    • 4a Nishimura T, Uemura S. J. Am. Chem. Soc. 2000; 122: 12049
    • 4b Zhang W, Pan Y.-L, Yang C, Li X, Wang B. Org. Chem. Front. 2019; 6: 2765
    • 4c Xing W.-L, Shang R, Wang G.-Z, Fu Y. Chem. Commun. 2019; 55: 14291
    • 4d Angelini L, Malet Sanz L, Leonori D. Synlett 2020; 31: 37
    • 4e Shuai B, Fang P, Mei T.-S. Synlett 2020; 32: 1637
    • 4f Zuo H.-D, Zhu S.-S, Hao W.-J, Wang S.-C, Tu S.-J, Jiang B. ACS Catal. 2021; 11: 6010
    • 4g Li M, Wang C.-T, Bao Q.-F, Qiu Y.-F, Wei W.-X, Li X.-S, Wang Y.-Z, Zhang Z, Wang J.-L, Liang Y.-M. Org. Lett. 2021; 23: 751
    • 4h Zheng Y.-N, Liu Y, Cai X.-E, Wu H.-L, Huang X.-J, Liu Y.-L, Wei W.-T. Asian J. Org. Chem. 2022; 11: e202200183
    • 5a Murakami M, Itahashi T, Amii H, Takahashi K, Ito Y. J. Am. Chem. Soc. 1998; 120: 9949
    • 5b Murakami M, Tsuruta T, Ito Y. Angew. Chem. Int. Ed. 2000; 39: 2484
    • 5c Matsuda T, Shigeno M, Maruyama Y, Murakami M. Chem. Lett. 2007; 36: 744
    • 5d Matsuda T, Shigeno M, Murakami M. J. Am. Chem. Soc. 2007; 129: 12086
    • 6a Matsuda T, Makino M, Murakami M. Org. Lett. 2004; 6: 1257
    • 6b Matsuda T, Makino M, Murakami M. Bull. Chem. Soc. Jpn. 2005; 78: 1528
    • 6c Matsuda T, Shigeno M, Makino M, Murakami M. Org. Lett. 2006; 8: 3379
  • 7 Souillart L, Cramer N. Angew. Chem. Int. Ed. 2014; 53: 9640
    • 9a Matsuda T, Shigeno M, Murakami M. Org. Lett. 2008; 10: 5219
    • 9b Ishida N, Ikemoto W, Murakami M. Org. Lett. 2012; 14: 3230
    • 9c Ishida N, Ikemoto W, Murakami M. J. Am. Chem. Soc. 2014; 136: 5912
    • 9d Zhou Y, Rao C, Song Q. Org. Lett. 2016; 18: 4000
    • 9e Cao J, Chen L, Sun F.-N, Sun Y.-L, Jiang K.-Z, Yang K.-F, Xu Z, Xu L.-W. Angew. Chem. Int. Ed. 2019; 58: 897
    • 9f Sun Y.-L, Wang X.-B, Sun F.-N, Chen Q.-Q, Cao J, Xu Z, Xu L.-W. Angew. Chem. Int. Ed. 2019; 58: 6747
    • 9g Sun F.-N, Yang W.-C, Chen X.-B, Sun Y.-L, Cao J, Xu Z, Xu L.-W. Chem. Sci. 2019; 10: 7579
    • 9h Yang W.-C, Chen X.-B, Song K.-L, Wu B, Gan W.-E, Zheng Z.-J, Cao J. Org. Lett. 2021; 23: 1309
    • 9i Song K.-L, Wu B, Gan W.-E, Yang W.-C, Chen X.-B, Cao J, Xu L.-W. Org. Chem. Front. 2021; 8: 3398
    • 9j Chen C, Zhao H, Pu Y, Tang L, Wang J, Shang Y. Chem. Commun. 2021; 57: 12944
    • 9k Gan W.-E, Cao J, Xu L.-W. Org. Chem. Front. 2022; 9: 5798
    • 9l Chen L, Shi C, Li W, Li B, Zhu J, Lin A, Yao H. Org. Lett. 2022; 24: 9157
    • 10a Ding D, Dong H, Wang C. iScience 2020; 23: 101017
    • 10b Lombardi L, Cerveri A, Ceccon L, Pedrazzani R, Monari M, Bertuzzi G, Bandini M. Chem. Commun. 2022; 58: 4071
  • 11 Ano Y, Takahashi D, Yamada Y, Chatani N. ACS Catal. 2023; 13: 2234
  • 12 Li R, Shi X, Zhao D. Chin. J. Chem. 2023; 41: 1679
  • 13 Cao J, Xu L.-W. Chem. Commun. 2023; 59: 3373
    • 14a Benzyl 3-Phenylbutanoate (3); Typical Procedure: In a glove box, an oven-dried screw-capped vial (10 mL) equipped with a magnetic stirrer bar was charged sequentially with (IPr)Pd(allyl)Cl (8.6 mg, 0.015 mmol), t-BuOK (1.7 mg, 0.015 mmol), and toluene (0.75 mL), and the mixture was stirred for a few minutes at r.t. Cyclobutanone 1 (0.3 mmol), benzyl alcohol (2; 65 mg, 0.6 mmol), and toluene (0.75 mL) were then added, and the vial was sealed with a Teflon cap and heated at 90 °C with stirring for 20 h. The resulting mixture was filtered through a pad of Celite and eluted with EtOAc. The eluent was concentrated under a reduced pressure and the residue was purified by column chromatography (silica gel) to give a pale-yellow oil; yield: 62.5 mg (80%); R f = 0.47 (hexane–EtOAc, 5:1). IR (ATR): 3031 , 2964 , 1733 , 1453 , 1265 , 1154 1H NMR (400 MHz, CDCl3): δ = 7.36–7.18 (c, 10 H), 5.05 (s, 2 H), 3.35–3.25 (m, 1 H), 2.68 (dd, J = 15.1, 7.1 Hz, 1 H), 2.61 (dd, J = 15.1, 8.0 Hz, 1 H), 1.30 (d, J = 6.9 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 172.4, 145.7, 136.0, 128.6, 128.3, 126.9, 126.6, 66.3, 43.0, 36.7, 22.0 (two peaks were obscured due to the overlap of the signals). MS (EI) m/z (%) = 163 (39) [M–Bn]+, 121 (100), 117 (19), 105 (46), 103 (11), 91 (100), 79 (17), 78 (11), 77 (23), 65 (20), 51 (10). HRMS (DART): m/z [M + H]+ calcd for C17H19O2: 255.1380; found: 255.1369.