Subscribe to RSS
DOI: 10.1055/s-0042-1751525
Enzymatic Kinetic Resolution (EKR) of α-Allenols Enabled by a Commercially Available Immobilized Lipase
We acknowledge the National Natural Science Foundation of China (Grant No. 22271054), the Thousand Young Talents Program of China, and Fudan University (start-up grant) for financial support.

Abstract
Enzymatic kinetic resolution (EKR) of racemates has been considered as an efficient and scalable technology to deliver enantiopure substances in an environmentally benign way. Herein, we develop a practical EKR of α-allenols enabled by a commercially available immobilized lipase, Lipozyme TL-IM. The stereoselectivity factor (S-factor) of this kinetic resolution (KR) was investigated to reach up to >1000. The robust nature of the EKR strategy is reflected by a broad scope of α-allenol substrates with the excellent control of enantioselectivity. This method offers an alternative approach to access chiral α-allenols, which can be easily transformed into many valuable oxycycles.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751525.
- Supporting Information
Publication History
Received: 14 September 2023
Accepted after revision: 30 October 2023
Article published online:
27 November 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Nakamura K, Matsuda T. Enzymatic Kinetic Resolution . In Enantiomer Separation . Toda F. Springer; Dordrecht: 2004
- 1b Berry SS, Jones S. Org. Biomol. Chem. 2021; 19: 10493
- 1c Hall M. RSC Chem. Biol. 2021; 2: 958
- 1d Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Angew. Chem. Int. Ed. 2021; 60: 88
- 1e Zhang J, Zhu C. Chin. Chem. Lett. 2023; in press
- 2a Yang B, Zhu C, Qiu Y, Bäckvall JE. Angew. Chem. Int. Ed. 2016; 55: 5568
- 2b Zhu C, Schwarz JL, Cembellín S, Greßies S, Glorius F. Angew. Chem. Int. Ed. 2018; 57: 437
- 2c Yue X, Li Y, Sang D, Tao Y, Huang Z, Chen F. Chin. Chem. Lett. 2023; 34: 108178
- 3 Verho O, Bäckvall JE. J. Am. Chem. Soc. 2015; 137: 3996
- 4a Adams CS, Weatherly CD, Burke EG, Schomaker JM. Chem. Soc. Rev. 2014; 43: 3136
- 4b Lechel T, Pfrengle F, Reissig H.-U, Zimmer R. ChemCatChem 2013; 5: 2100
- 4c Zimmer R, Dinesh CU, Nandanan E, Khan FA. Chem. Rev. 2000; 100: 3067
- 4d Marshall JA. Chem. Rev. 2000; 100: 3163
- 4e Lu X, Zhang C, Xu Z. Acc. Chem. Res. 2001; 34: 535
- 4f Bates RW, Satcharoen V. Chem. Soc. Rev. 2002; 31: 12
- 4g Ye J, Ma S. Org. Chem. Front. 2014; 1: 1210
- 4h Wei L.-L, Xiong H, Hsung RP. Acc. Chem. Res. 2003; 36: 773
- 4i Rivera-Fuentes P, Diederich F. Angew. Chem. Int. Ed. 2012; 51: 2818 ; Angew. Chem. 2012, 124, 2872
- 4j Ma S. Acc. Chem. Res. 2009; 42: 1679
- 4k Alcaide B, Almendros P, Aragoncillo C. Chem. Soc. Rev. 2010; 39: 783
- 4l Ma S. Aldrichimica Acta 2007; 40: 91
- 4m Jeganmohan M, Cheng C.-H. Chem. Commun. 2008; 3101
- 4n Hashmi AS. K. Angew. Chem. Int. Ed. 2000; 39: 3590 ; Angew. Chem. 2000, 112, 3737
- 4o Sydnes LK. Chem. Rev. 2003; 103: 1133
- 4p Hoffmann-Röder A, Krause N. Angew. Chem. Int. Ed. 2002; 41: 2933 ; Angew. Chem. 2002, 114, 3057
- 4q Aubert C, Fensterbank L, Garcia P, Malacria M, Simonneau A. Chem. Rev. 2011; 111: 1954
- 4r Krause N, Winter C. Chem. Rev. 2011; 111: 1994
- 4s Lýpez F, Mascareñas JL. Chem. Eur. J. 2011; 17: 418
- 4t Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074 ; Angew. Chem. 2012, 124, 3128
- 4u Yu S, Ma S. Chem. Commun. 2011; 47: 5384
- 4v Ma S. Acc. Chem. Res. 2003; 36: 701
- 4w Ye J, Ma S. Acc. Chem. Res. 2014; 47: 989
- 4x Ma S. Chem. Rev. 2005; 105: 2829
- 5a Ma S, Zhao S. J. Am. Chem. Soc. 1999; 121: 7943
- 5b Chen B, Lu Z, Chai G, Fu C, Ma S. J. Org. Chem. 2008; 73: 9486
- 5c Li J, Kong W, Yu Y, Fu C, Ma S. J. Org. Chem. 2009; 74: 8733
- 5d Wang Y, Zheng K, Hong R. J. Am. Chem. Soc. 2012; 134: 4096
- 5e Li S, Miao B, Yuan W, Ma S. Org. Lett. 2013; 15: 977
- 5f Li H, Khan I, Li Q, Zhang YJ. Org. Lett. 2022; 24: 2081
- 5g Naapuri J, Losada-Garcia N, Rothemann R, Pichardo M, Prechtl M, Palomo J, Deska J. ChemCatChem 2022; 14: e202200362
- 5h Wu Y, Wu L, Zhang Z.-M, Xu B, Liu Y, Zhang J. Chem. Sci. 2022; 13: 2021
- 6 Huang X, Ma S. Acc. Chem. Res. 2019; 52: 1301
- 7a Searles S, Li Y, Nassim B, Lopes M.-TR, Tran PT, Crabbé P. J. Chem. Soc., Perkin Trans. 1 1984; 747
- 7b Kuang J, Ma S. J. Org. Chem. 2009; 74: 1763
- 7c Kuang J, Ma S. J. Am. Chem. Soc. 2010; 132: 1786
- 7d Ye J, Li S, Chen B, Fan W, Kuang J, Liu J, Liu Y, Miao B, Wan B, Wang Y, Xie X, Yu Q, Yuan W, Ma S. Org. Lett. 2012; 14: 1346
- 7e Tang X, Zhu C, Cao T, Kuang J, Lin W, Ni S, Zhang J, Ma S. Nat. Commun. 2013; 4: 2450
- 7f Luo H, Ma S. Eur. J. Org. Chem. 2013; 3041
- 7g Ye J, Fan W, Ma S. Chem. Eur. J. 2013; 19: 716
- 7h Huang X, Cao T, Han Y, Jiang X, Lin W, Zhang J, Ma S. Chem. Commun. 2015; 51: 6956
- 8 Xu D, Li Z, Ma S. Tetrahedron Lett. 2003; 44: 6343
- 9 Xu D, Li Z, Ma S. Chin. J. Org. Chem. 2004; 22: 310
- 10a Xu D, Li Z, Ma S. Chem. Eur. J. 2002; 8: 5012
- 10b Xu D, Li Z, Ma S. Tetrahedron: Asymmetry 2003; 14: 3657
- 11 Yang B, Zhu C, Qiu Y, Bäckvall JE. Angew. Chem. Int. Ed. 2016; 55: 5568
- 12 Li W, Lin Z, Chen L, Tian X, Wang Y, Huang S.-H, Hong R. Tetrahedron Lett. 2016; 57: 603
For selected examples, see:
For reviews, see:
For efficient enzymatic kinetic resolution of α-allenic alcohols, where the allene is the large group, see: