Synthesis of New Highly Functionalized Quinolines via a Novel FeIII-Catalyzed Domino aza-Michael/Aldol/Aromatization Reaction
Felix Heckmann
a
Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
,
Mohammad M. Ibrahim
a
Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
b
Department of Chemistry, Faculty of Science, University of Al al-Bayt, P. O. Box 130040, 25113 Al-Mafraq, Jordan
,
Frank Hampel
a
Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
a
Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
› Author AffiliationsWe gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG, grant no. TS 87/28-1 for S.B.T.).
We report the development of a straightforward, waste-reducing, environmentally friendly, FeIII-catalyzed domino aza-Michael/aldol/aromatization reaction in the presence of water to access high-value functionalized quinolines by using 2-aminobenzophenones and ethyl buta-2,3-dienoate as starting compounds. The tangible advantages, that is, the utilization of commercially available and/or easily accessible substrates, simplicity, mild reaction conditions, and application of water as a solvent, make this three-step domino process green and highly appealing for the direct construction of a wide variety of highly functionalized quinolines in up to 78% yield.
Key words
domino reactions -
Fe catalysis -
Lewis acid catalysis -
quinoline synthesis -
sustainability
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751546.
9
Talamas FX,
Abbot SC,
Anand S,
Brameld KA,
Carter DS,
Chen J,
Davis D,
de Vicente J,
Fung AD,
Gong L,
Harris SF,
Inbar P,
Labadie SS,
Lee EK,
Lemoine R,
Le Pogam S,
Leveque V,
Li J,
McIntosh J,
Nájera I,
Park J,
Railkar A,
Rajyaguru S,
Sangi M,
Schoenfeld RC,
Staben LR,
Tan Y,
Taygerly JP,
Villaseñor AG,
Weller PE.
J. Med. Chem. 2014; 57: 1914
11
Barbosa-Lima G,
Moraes AM,
Da Araújo AS,
Da Silva ET,
de Freitas CS,
Vieira YR,
Marttorelli A,
Neto JC,
Bozza PT,
de Souza MV. N,
Souza TM. L.
Eur. J. Med. Chem. 2017; 127: 334
19g
Patel A,
Patel S,
Mehta M,
Patel Y,
Patel R,
Shah D,
Patel D,
Shah U,
Patel M,
Patel S,
Solanki N,
Bambharoliya T,
Patel S,
Nagani A,
Patel H,
Vaghasiya J,
Shah H,
Prajapati B,
Rathod M,
Bhimani B,
Patel R,
Bhavsar V,
Rakholiya B,
Patel M,
Patel P.
Green Chem. Lett. Rev. 2022; 15: 337
22a
Held FE,
Guryev AA,
Fröhlich T,
Hampel F,
Kahnt A,
Hutterer C,
Steingruber M,
Bahsi H,
von Bojničić-Kninski C,
Mattes DS,
Foertsch TC,
Nesterov-Mueller A,
Marschall M,
Tsogoeva SB.
Nat. Commun. 2017; 8: 15071