Synlett 2024; 35(16): 1833-1838
DOI: 10.1055/s-0042-1751551
synpacts

A Redox Tale of Two Phosphine Oxides (and a Terthiophene)

,
Financial support from ETH Zürich is gratefully acknowledged.


Abstract

Despite the appeal of organic redox systems as next-generation energy-storage media, achieving high cell voltages with electrolytes based on main-group elements typically comes at the cost of reduced long-term stabilities. In this Synpacts article, we summarize our recent finding that the introduction of phosphine oxide functionalities can unlock the ability of terthiophenes to serve as robust two-electron acceptors at extreme potentials. These investigations uncovered a fundamentally new class of multielectron redox systems, capable of expanding the cell potential range achievable with organic electrolytes without compromising stability.



Publikationsverlauf

Eingereicht: 07. Dezember 2023

Angenommen nach Revision: 02. Januar 2024

Artikel online veröffentlicht:
07. Februar 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Organic Redox Systems, Synthesis, Properties, and Applications. Nishinaga T. Wiley; Hoboken: 2016
  • 2 Raabe D. Chem. Rev. 2023; 123: 2436
  • 3 Muench S, Wild A, Friebe C, Häupler B, Janoschka T, Schubert US. Chem. Rev. 2016; 116: 9438
  • 4 CRC Handbook of Chemistry and Physics, 84th ed. Lide DR. CRC Press; Boca Raton: 2003. Chap. 10 178
  • 5 Power PP. Chem. Rev. 2003; 103: 789
  • 6 Feng Z, Tang S, Su Y, Wang X. Chem. Soc. Rev. 2022; 51: 5930
  • 7 Main Group Strategies Towards Functional Hybrid Materials. Baumgartner T, Jaekle F. Wiley; Hoboken: 2018
  • 8 Winsberg J, Hagemann T, Janoschka T, Hager MD, Schubert US. Angew. Chem. Int. Ed. 2017; 56: 686
  • 9 Luo J, Hu B, Hu M, Zhao Y, Liu TL. ACS Energy Lett. 2019; 4: 2220
  • 10 Rugolo J, Aziz MJ. Energy Environ. Sci. 2012; 5: 7151
  • 11 Johnson SC, Rhodes JD, Webber ME. Appl. Energy 2020; 262: 114492
  • 12 Alotto P, Guarnieri M, Moro F. Renewable Sustainable Energy Rev. 2014; 29: 325
  • 13 Gong K, Fang Q, Gu S, Li SF. Y, Yan Y. Energy Environ. Sci. 2015; 8: 3515
  • 14 Li M, Rhodes Z, Cabrera-Pardo JR, Minteer SD. Sustainable Energy Fuels 2020; 4: 4370
  • 15 Fang X, Li Z, Zhao Y, Yue D, Zhang L, Wei X. ACS Mater. Lett. 2022; 4: 277
  • 16 Walser-Kuntz R, Yan Y, Sigman MS, Sanford MS. Acc. Chem. Res. 2023; 56: 1239
  • 17 Hu B, Liu TL. J. Energy Chem. 2018; 27: 1326
  • 18 Huang J, Yang Z, Vijayakumar M, Duan W, Hollas A, Pan B, Wang W, Wei X, Zhang L. Adv. Sustainable Syst. 2018; 2: 1700131
  • 19 Griffin JD, Pancoast AR, Sigman MS. J. Am. Chem. Soc. 2021; 143: 992
  • 20 Sevov CS, Hickey DP, Cook ME, Robinson SG, Barnett S, Minteer SD, Sigman MS, Sanford MS. J. Am. Chem. Soc. 2017; 139: 2924
  • 21 Perepichka IF, Perepichka DF, Meng H. In Handbook of Thiophene-Based Materials, Chap. 19. Perepichka IF, Perepichka DF. Wiley; Chichester: 2009: 695
  • 22 Bock H, Lechner-Knoblauch U, Hänel P. Chem. Ber. 1986; 119: 3749
  • 23 Käch D, Gasser AC, Wettstein L, Schweinzer C, Bezdek MJ. Angew. Chem. Int. Ed. 2023; 62: e202304600
    • 24a Kaloni TP, Schreckenbach G, Freund MS. J. Phys. Chem. C 2015; 119: 3979
    • 24b Capozzi B, Dell EJ, Berkelbach TC, Reichman DR, Venkataraman L, Campos LM. J. Am. Chem. Soc. 2014; 136: 10486
  • 25 Kuchison AM, Wolf MO, Patrick BO. Chem. Commun. 2009; 7387
  • 26 Kowalski JA, Neyhouse B, Brushett FR. Electrochem. Commun. 2020; 111: 106625
  • 27 Neyhouse BJ, Fenton AM. Jr, Brushett FR. J. Electrochem. Soc. 2021; 168: 050501
  • 28 Antoni PW, Golz C, Hansmann MM. Angew. Chem. Int. Ed. 2022; 61: e202203064
  • 29 Hendriks KH, Sevov CS, Cook ME, Sanford MS. ACS Energy Lett. 2017; 2: 2430
  • 30 Daub N, Janssen RA. J, Hendriks KH. ACS Appl. Energy Mater. 2021; 4: 9248
  • 31 Darling RM, Gallagher KG, Kowalski JA, Ha S, Brushett FR. Energy Environ. Sci. 2014; 7: 3459
  • 32 Amini K, Shocron AN, Suss ME, Aziz MJ. ACS Energy Lett. 2023; 8: 3526
  • 33 Li M, Case J, Minteer SD. ChemElectroChem 2021; 8: 1215