Synlett 2023; 34(10): 1135-1146
DOI: 10.1055/s-0042-1753141
cluster
Dispersion Effects

Efficient Computation of the Interaction Energies of Very Large Non-covalently Bound Complexes

,
,
,


Abstract

We present a new benchmark set consisting of 16 large non-covalently bound systems (LNCI16) ranging from 380 up to 1988 atoms and featuring diverse interaction motives. Gas-phase interaction energies are calculated with various composite DFT, semi-empirical quantum mechanical (SQM), and force field (FF) methods and are evaluated using accurate DFT reference values. Of the employed QM methods, PBEh-3c proves to be the most robust for large systems with a relative mean absolute deviation (relMAD) of 8.5% with respect to the reference interaction energies. r2SCAN-3c yields an even smaller relMAD, at least for the subset of complexes for which the calculation could be converged, but is less robust for systems with smaller HOMO–LUMO gaps. The inclusion of Fock-exchange is therefore important for the description of very large non-covalent interaction (NCI) complexes in the gas phase. GFN2-xTB was found to be the best performer of the SQM methods with an excellent result of only 11.1% deviation. From the assessed force fields, GFN-FF and GAFF achieve the best accuracy. Considering their low computational costs, both can be recommended for routine calculations of very large NCI complexes, with GFN-FF being clearly superior in terms of general applicability. Hence, GFN-FF may be routinely applied in supramolecular synthesis planning.

1 Introduction

2 The LNCI16 Benchmark Set

3 Computational Details

4 Generation of Reference Values

5 Results and Discussion

6 Conclusions

Supporting Information



Publication History

Received: 21 July 2022

Accepted after revision: 04 October 2022

Article published online:
30 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany