RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2024; 35(08): 915-919
DOI: 10.1055/s-0043-1763618
DOI: 10.1055/s-0043-1763618
cluster
Special Issue dedicated to Keith Fagnou
Synergistic Organoboron/Palladium Catalysis for Regioselective N-Allylation of 2-Pyridones, 4-Pyridones, and Related Ambident Heterocycles
This work was funded by Natural Sciences and Engineering Research Council of Canada (NSERC, Discovery Grant), the Canada Foundation for Innovation (projects 17545 and 19119), and the Ontario Research Foundation (Province of Ontario).
Abstract
The use of a boronic acid co-catalyst along with a palladium complex enables efficient dehydrative couplings of allylic alcohols and tautomerizable heterocycles. The protocol has been applied to achieve N-allylations of 2-pyridones, 4-pyridones, 4-pyrimidinones, and their benzofused derivatives.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1763618.
- Supporting Information
Publikationsverlauf
Eingereicht: 24. August 2023
Angenommen nach Revision: 04. Oktober 2023
Artikel online veröffentlicht:
15. November 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Zhang Y, Pike A. Bioorg. Med. Chem. Lett. 2021; 38: 127849
- 2 Breugst M, Mayr H. J. Am. Chem. Soc. 2010; 132: 15380
- 3a Sato Y, Yoshimatsu K, Otera J. Synlett 1995; 845
- 3b Liu H, Ko S.-B, Josien H, Curran DP. Tetrahedron Lett. 1995; 36: 8917
- 3c Conreaux D, Bossharth E, Monteiro N, Desbordes P, Balme G. Tetrahedron Lett. 2005; 46: 7917
- 3d Fang Y.-Q, Bio MM, Hansen KB, Potter MS, Clausen A. J. Am. Chem. Soc. 2010; 132: 15525
- 4 Comins DL, Jianhua G. Tetrahedron Lett. 1994; 35: 2819
- 5a Timmerman JC, Widenhoefer RA. Adv. Synth. Catal. 2015; 357: 3703
- 5b Gurak JA. Jr, Tran VT, Sroda MM, Engle KM. Tetrahedron 2017; 73: 3636
- 6a Lu Z, Li Y, Ru Y, Yang X, Hao C, Zuo M, Jiao R, Wu W, Zhou Y, Yao H, Huang N, Fu Y. Chem. Commun. 2022; 58: 1215
- 6b Cadena M, Villatoro RS, Gupta JS, Phillips C, Allen JB, Arman HD, Wherritt DJ, Clanton NA, Ruchelman AL, Simmons EM, DelMonte AJ, Coombs JR, Frantz DE. ACS Catal. 2022; 12: 10199
- 7a Yeung CS, Hsieh TH. H, Dong VM. Chem. Sci. 2011; 2: 544
- 7b Pan S, Ryu N, Shibata T. Org. Lett. 2013; 15: 1902
- 7c Feng B, Li Y, Li H, Zhang X, Xie H, Cao H, Yu L, Xu Q. J. Org. Chem. 2018; 83: 6769
- 7d Duari S, Biswas S, Roy A, Maity S, Mishra AK, de Souza AR, Elsharif AM, Morgon NH, Biswas S. Adv. Synth. Catal. 2022; 364: 865
- 7e Ni Y, Sun J. Eur. J. Org. Chem. 2023; 26: e202300368
- 8a Falck-Pedersen ML, Benneche T, Undheim K. Acta Chem. Scand. 1989; 43: 251
- 8b Moreno-Mañas M, Pleixats R, Villaroya M. Tetrahedron 1993; 49: 1457
- 8c Moreno-Mañas M, Pleixats R. Adv. Heterocycl. Chem. 1996; 66: 73
- 9a Rodrigues A, Lee EE, Batey RA. Org. Lett. 2010; 12: 260
- 9b Khan S, Shah BH, Khan I, Li M, Zhang YJ. Chem. Commun. 2019; 55: 13168
- 10 Li C, Kähny M, Breit B. Angew. Chem. Int. Ed. 2014; 53: 13780
- 11 Zhang X, Yang Z.-P, Huang L, You S.-L. Angew. Chem. Int. Ed. 2015; 54: 1873
- 12 Vemula SR, Kumar D, Cook GR. ACS Catal. 2016; 6: 5295
- 13a Schmidt JP, Li C, Breit B. Chem. Eur. J. 2017; 23: 6531
- 13b Sieger SV, Lubins I, Breit B. ACS Catal. 2022; 12: 11301
- 14 Lu C.-J, Chen D.-K, Chen H, Wang H, Jin H, Huang X, Gao J. Org. Biomol. Chem. 2017; 15: 5756
- 15 Itami K, Yamazaki D, Yoshida J.-i. Org. Lett. 2003; 5: 2161
- 16a Sundararaju B, Achard M, Bruneau C. Chem. Soc. Rev. 2012; 41: 4467
- 16b Butt NA, Zhang W. Chem. Soc. Rev. 2015; 44: 7929
- 17a Kumar D, Vemula SR, Cook GR. Green Chem. 2015; 17: 4300
- 17b Vaidya GN, Magpure M, Kumar D. ACS Sustainable Chem. Eng. 2021; 9: 1846
- 18 Zhou Q, Zheng L, Ma B, Huang L, Liu A, Cao X, Yu J, Ma X. J. Org. Chem. 2020; 85: 5097
- 19 Desai SP, Taylor MS. Org. Lett. 2021; 23: 7049
- 20 Desai SP, Zambri MT, Taylor MS. J. Org. Chem. 2022; 87: 5385
- 21 Zambri MT, Hou TR, Taylor MS. Org. Lett. 2022; 24: 7617
- 22a McCubbin JA, Hosseini H, Krokhin OV. J. Org. Chem. 2010; 75: 959
- 22b Zheng H, Lejkowski M, Hall DG. Chem. Sci. 2011; 2: 1305
- 22c Zheng H, Ghanbari S, Nakamura S, Hall DG. Angew. Chem. Int. Ed. 2012; 51: 6187
- 22d Mo X, Hall DG. J. Am. Chem. Soc. 2016; 138: 10762
- 23a Bajaj SO, Sharif EU, Akhmedov NG, O’Doherty GA. Chem. Sci. 2014; 5: 2230
- 23b Fujita T, Yamamoto Y, Morita Y, Chen H, Shimizu Y, Kanai M. J. Am. Chem. Soc. 2018; 140: 5899
- 23c Tang H, Tian Y.-B, Cui H, Li R.-Z, Zhang X, Niu D. Nat. Commun. 2020; 11: 5681
- 23d Wu H, Hu L, Shi Y, Shen Z, Huang G. ACS Catal. 2022; 12: 2722
- 24a Trost BM, McEachern EJ, Toste FD. J. Am. Chem. Soc. 1998; 120: 12702
- 24b Horino Y, Naito M, Kimura M, Tanaka S, Tamaru Y. Tetrahedron Lett. 2001; 42: 3113
- 24c Kimura M, Horino Y, Mukai R, Tanaka S, Tamaru Y. J. Am. Chem. Soc. 2001; 123: 10401
- 24d Hirata G, Satomura H, Kumagae H, Shimizu A, Onodera G, Kimura M. Org. Lett. 2017; 19: 6148
- 25a Hall DG. Chem. Soc. Rev. 2019; 48: 3475
- 25b Taylor MS. Acc. Chem. Res. 2015; 48: 295
- 25c Dimitrijević E, Taylor MS. Chem. Sci. 2013; 4: 3298
- 26 General Protocol for N-Allylation: Synthesis of 1-Allylpyridin-4(1H)-one (3a) Under an atmosphere of argon, an oven-dried two-dram vial equipped with a magnetic stir bar and rubber spectrum was charged with 4-pyridone (47.6 mg, 0.500 mmol, 1 equiv), [Pd(allyl)Cl]2 (1.8 mg, 0.0050 mmol, 1 mol%), Xantphos (5.8 mg, 0.010 mmol, 2 mol %), and 3,5-bis(trifluoromethyl)phenylboronic acid (1a, 25.8 mg, 0.100 mmol, 20 mol%). The vial was evacuated and backfilled with argon, then toluene (2.5 mL) and allyl alcohol (41 mL, 35 mg, 0.60 mmol, 1.2 equiv) were added sequentially by syringe. The vial was sealed with a cap, placed in an oil bath at 50 °C and stirred for 24 h. The mixture was cooled to room temperature, concentrated in vacuo, and purified by flash column chromatography on silica gel (95:5 CH2Cl2/MeOH), yielding 3a as a yellow oil in 97% yield (65.5 mg, 0.484 mmol). Characterization Data for 3a 1H NMR (500 MHz, CDCl3): δ = 7.25 (d, J = 7.7 Hz, 2 H), 6.30 (d, J = 7.7 Hz, 2 H), 5.87 (ddt, J = 17.0, 10.3, 5.7 Hz, 1 H), 5.37–5.11 (m, 2 H), 4.34 (d, J = 5.7 Hz, 2 H) ppm. 13C NMR (126 MHz, CDCl3): δ = 178.8, 139.9, 131.7, 119.9, 118.6, 58.7 ppm. IR (film): ν = 3082 (w), 1633 (s), 1538 (s), 1399 (m), 1181 (s), 940 (w), 850 (s) cm–1. HRMS (direct analysis in real time): m/z calcd for C8H10NO [M + H]+: 136.0755; found: 136.0757. Spectroscopic data were in agreement with those reported in the literature.13b For experimental protocols, characterization data, and copies of NMR spectra of all products shown in Schemes 2 and 3, see the Supporting Information.
- 27 Dubovyk I, Watson ID. G, Yudin AK. J. Org. Chem. 2013; 78: 1559
- 28 Valenzuela SA, Howard JR, Park HM, Darbha S, Anslyn EV. J. Org. Chem. 2002; 87: 15071