RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett
DOI: 10.1055/s-0043-1773538
DOI: 10.1055/s-0043-1773538
letter
Emerging Trends in Organic Chemistry: A Focus on India
Regioselective Formal (3+2) Cyclization of Propargylic para-Quinone Methides (p-QMs) with β-Keto Carbonyls: Direct Access to (Fused)-Furans
S.Y. is thankful for a University of Hyderabad Institute of Eminence grant (UoH/IoE/RC1/2020/8). A.K. and L.A. are thankful to NFSC and CSIR for their fellowships.

Abstract
We report a calcium(II)-catalyzed, base-promoted, formal (3+2) cyclization of para-quinone methides with 1,3-dicarbonyl derivatives to access furans, dihydrofurans, dihydrobenzofurans, and naphthofurans under solvent-free conditions. The reaction shows good substrate generality and excellent regioselectivity.
Key words
propargylic para-quinone methides - calcium catalysis - furans - pyrans - enols - green chemistrySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1773538.
- Supporting Information
Publikationsverlauf
Eingereicht: 24. Januar 2025
Angenommen nach Revision: 21. März 2025
Artikel online veröffentlicht:
24. April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Weber A, Dehn R, Schlager N, Dieter B, Kirschning A. Org. Lett. 2014; 16: 568
- 1b Nguyen PH, Zhao BT, Ali MY, Choi JS, Rhyu DY, Min BS, Woo MH. J. Nat. Prod. 2015; 78: 34
- 2a Hamels D, Dansette PM, Hillard EA, Top S, Vessieres A, Herson P, Jaouen G, Mansuy D. Angew. Chem. Int. Ed. 2009; 48: 9124 ; Angew. Chem. 2009, 121, 9288
- 2b Sridar C, D’Agostino J, Hollenberg PF. Drug Metab. Dispos. 2012; 40: 2280
- 2c Albertson AK. F, Lumb J.-P. Angew. Chem. Int. Ed. 2015; 54: 2204
- 2d Matsuura BS, Keylor MH, Li B, Lin Y, Allison S, Pratt DA, Stephenson CR. Angew. Chem. Int. Ed. 2015; 54: 3754
- 3a Parra A, Tortosa M. ChemCatChem 2015; 7: 1524
- 3b Caruana L, Fochi M, Bernardi L. Molecules 2015; 20: 11733
- 3c Chauhan P, Kaya U, Enders D. Adv. Synth. Catal. 2017; 359: 888
- 3d Li W, Xu X, Zhang P, Li P. Chem. Asian J. 2018; 13: 2350
- 3e Lima CG. S, Pauli FP, Costa DC. S, de Souza AS, Forezi LS. M, Ferreira VF, de Carvalho da Silva F. Eur. J. Org. Chem. 2020; 2650
- 3f Wang J.-Y, Hao W.-J, Tu S.-J, Jiang B. Org. Chem. Front. 2020; 7: 1743
- 3g Liu X, Ren Y, Zhu L, Li T, Xu W, Liu Y, Tang K-W, Xiong B. Tetrahedron 2023; 148: 133655
- 4a Zhu Y, Wang D, Huang Y. Org. Lett. 2019; 21: 908
- 4b Wu QL, Guo J, Huang G.-B, Chan AS. C, Weng J, Lu G. Org. Biomol. Chem. 2020; 18: 860
- 4c Qi Y, Zhang F, Wang L, Feng A, Zhu R, Sun S, Li W, Liu L. Org. Biomol. Chem. 2020; 18: 3522
- 4d Rayaroth A, Singh RK, Kalyanakrishnan AV, Hari K, Kaliyamoorthy A. Org. Biomol. Chem. 2020; 18: 3354
- 5a Chu W.-D, Zhang L.-F, Bao X, Zhao X.-H, Zeng C, Du J.-Y, Zhang G.-B, Wang F.-X, Ma X.-Y, Fan C.-A. Angew. Chem. Int. Ed. 2013; 52: 9229
- 5b Caruana L, Kniep F, Johansen TK, Poulsen PH, Jørgensen KA. J. Am. Chem. Soc. 2014; 136: 15929
- 5c Toran R, Vila C, Sanz-Marco A, Muñoz MC, Pedro JR, Blay G. Eur. J. Org. Chem. 2020; 627
- 5d Qi S.-S, Jiang Z.-H, Chu M.-M, Wang Y.-F, Chen X.-Y, Ju W.-Z, Xu D.-Q. Org. Biomol. Chem. 2020; 18: 2398
- 6a Chen M, Sun J. Angew. Chem. Int. Ed. 2017; 56: 11966
- 6b Bai J.-F, Yasumoto K, Kano T, Maruoka K. Angew. Chem. Int. Ed. 2019; 58: 8898
- 7a Qian D, Wu L, Lin Z, Sun J. Nat. Commun. 2017; 8: 567
- 7b Zhang P, Huang Q, Cheng Y, Li R, Li P, Li W. Org. Lett. 2019; 21: 503
- 8 Liu X, Zhang J, Bai L, Wang L, Yang D, Wang R. Chem. Sci. 2020; 11: 671
- 9a Bai J.-F, Zhao L, Wang F, Yan F, Kano T, Maruoka K, Li Y. Org. Lett. 2020; 22: 5439
- 9b Zhang X.-Z, Qiu Z.-W, Wen G.-H, Ma A.-J, Bao P.-J, Du J.-Y, Xu X.-T, Feng N, Li BQ. Synthesis 2020; 52: 3640
- 10 Zhang X.-Z, Li BQ, Qiu Z.-W, Ma A.-J, Peng J.-B, Du J.-Y, Feng N, Xu X.-T, Pan H.-P. J. Org. Chem. 2020; 85: 13306
- 11 For Zhang’s work, see: Qiu Z.-W, Xu X.-T, Pan H.-P, Jia Z.-S, Ma A.-J, Peng J.-B, Du J.-Y, Feng N, Li BQ, Zhang X.-Z. J. Org. Chem. 2021; 86: 6075
- 12a Harder S. Chem. Rev. 2010; 110: 3852
- 12b Begouin J.-M, Niggemann M. Chem. Eur. J. 2013; 19: 8030
- 12c Leboeuf D, Gandon V. Synthesis 2017; 49: 1500
- 12d Sun Y, Hu M, Fu Sh, Liu B. Org. Biomol. Chem. 2020; 18: 6443
- 12e Bariya D.-K, Halpani C, Mishra S. Curr. Org. Chem. 2022; 26: 1661
- 12f Li H, Kuang M, Liu Y, Yi W, Wang S. Org. Chem. Front. 2025; 12: 1355 https://doi.org/10.1039/d4qo02164a
- 13a Yaragorla S, Latha DS, Rajesh P. Adv. Synth. Catal. 2021; 363: 5486
- 13b Yaragorla S, Khan T, Chakroborty S. Org. Biomol. Chem. 2024; 22: 3622
- 13c Yaragorla S, Latha DS, Kumar R. Chem. Eur. J. 2024; 30: e202401480
- 13d Yaragorla S, Vinod M, Latha DS. Tetrahedron 2024; 168: 134339
- 14a Yaragorla S, Saini PL, Singh G. Tetrahedron Lett. 2015; 56: 1649
- 14b Yaragorla S, Saini PL, Vijaya BP, Almansour AI, Arumugam N. Tetrahedron Lett. 2016; 57: 2351
- 14c Dada R, Singh G, Pareek A, Kausar S, Yaragorla S. Tetrahedron Lett. 2016; 57: 3739
- 14d Pareek A, Dada R, Rana M, Sharma AK, Yaragorla S. RSC Adv. 2016; 6: 89732
- 14e Yaragorla S, Dada R, Pareek A, Singh G. RSC Adv. 2016; 6: 28865
- 14f Yaragorla S, Rajesh P, Pareek A, Kumar A. Adv. Synth. Catal. 2018; 360: 4422
- 14g Yaragorla S, Rajesh P. Org. Biomol. Chem. 2019; 17: 1924
- 14h Yaragorla S, Rajesh P. Eur. J. Org. Chem. 2020; 7243
- 14i Ali L, Latha DS, Kumar A, Yaragorla S. J. Org. Chem. 2023; 88: 5457
- 14j Yaragorla S, Ithu SR, Arun D, Srivardhan V. J. Org. Chem. 2023; 88: 16817
- 14k Yaragorla S, Khan T, Raoof J. J. Org. Chem. 2024; 89: 34
- 15 Reddy CR, Kumari A, Aswale S, Patil AD, Prapurna YL. J. Org. Chem. 2023; 88: 7046
For selected examples, see:
For examples, see:
For recent reviews on the chemistry of p-QMs, see:
For selected recent examples on racemic 1,6-addition of p-QMs, see:
For selected catalytic asymmetric 1,6-addition of p-QMs, see:
For 1,6-addition of propargylic p-QMs, see: