RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2025; 36(06): 689-694
DOI: 10.1055/s-0043-1775135
DOI: 10.1055/s-0043-1775135
letter
Visible-Light-Mediated Photoredox Radical Cyclization Reaction with Alkyl Boronic Acids Using Molecular Oxygen as a Sole Oxidant
We thank the Hunan Province Science Foundation for Youths (2023JJ40308), the Science and Technology Innovation Program of Hunan Province (2021RC2079), the China Postdoctoral Science Foundation (2022T150075 and 2022M720541), the Scientific Research Project of the Education Department of Hunan Province (22B0212 and 23C0066), the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (TSBI-CIP-CXRC-038), and the National College Students Innovation and Entrepreneurship Training Program (S202210537024).

Abstract
Indolo[2,1-b]quinazolin-12(6H)-one derivatives are prevalent in many synthetic intermediates, pharmaceuticals, and organic materials. Herein, we developed a photoredox radical cascade cyclization reaction that uses visible light as the primary energy input to promote the reaction, leading to a series of indolo[2,1-b]quinazolin-12(6H)-one derivatives under oxygen conditions.
Key words
photoredox - radical cyclization - molecular oxygen - indolo[2,1-b]quinazolin-12(6H)-one derivatives - metal-freeSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775135.
- Supporting Information
Publikationsverlauf
Eingereicht: 04. Juli 2024
Angenommen nach Revision: 26. August 2024
Artikel online veröffentlicht:
07. Oktober 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Ishikura M, Yamada K. Nat. Prod. Rep. 2009; 26: 803
- 1b Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
- 1c Zhang M.-Z, Chen Q, Yang G.-F. Eur. J. Med. Chem. 2015; 89: 421
- 2a Barluenga J, Rodríguez F, Fañanas FJ. Chem. Asian J. 2009; 4: 1036
- 2b Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
- 2c Cacchi S, Fabrizi G. Chem. Rev. 2011; 111: PR215
- 2d Shiri M. Chem. Rev. 2012; 112: 3508
- 2e Inman M, Moody CJ. Chem. Sci. 2013; 4: 29
- 2f Suárez A, Gohain M, Fernández-Rodríguez MA, Sanz R. J. Org. Chem. 2015; 80: 10421
- 3a Chen X, Liu B, Pei C, Li J, Zou D, Wu Y, Wu Y. Org. Lett. 2021; 23: 7787
- 3b Yang J, Sun B, Ding H, Huang P.-Y, Tang X.-L, Shi R.-C, Yan Z.-Y, Yu C.-M, Can J. Green Chem. 2021; 23: 575
- 3c Sun B, Huang P, Yan Z, Shi X, Tang X, Yang J, Jin C. Org. Lett. 2021; 23: 1026
- 3d Sun B, Ding H, Tian H.-X, Huang P.-Y, Jin C, Wu C.-L, Shen R.-P. Adv. Synth. Catal. 2022; 364: 766
- 3e Yang Z, Shan Y, Yu J.-T, Pan C. Eur. J. Org. Chem. 2021; 5382
- 3f Liu H, Yang Z, Huang G, Yu J.-T, Pan C. New J. Chem. 2022; 46: 1347
- 3g Sun B, Shi R, Zhang K, Tang X, Shi X, Xu J, Yang J, Jin C. Chem. Commun. 2021; 57: 6050
- 3h García-Ramírez J, Miranda LD. Synthesis 2021; 53: 1471
- 3i Sun B, Tang X, Shi R, Yan Z, Li B, Tang C, Jin C, Wu C, Sun RP. Asian J. Org. Chem. 2021; 10: 3390
- 4a Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
- 4b Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 4c Prier CK, Rankic DA, MacMilllan DW. C. Chem. Rev. 2013; 113: 5322
- 5a Tauber J, Imbr D, Opatz T. Molecules 2014; 19: 16190
- 5b Minisci F, Vismara E, Fontana F. Heterocycles 1989; 28: 489
- 5c Minisci F, Fontana F, Vismara E. J. Heterocycl. Chem. 1990; 27: 79
- 5d Duncton MA. J. Med. Chem. Commun. 2011; 2: 1135
- 5e Dong J, Liu Y, Wang Q. Chin. J. Org. Chem. 2021; 41: 3771
- 6a Dong J, Yue F, Xu W, Song H, Liu Y, Wang Q. Green Chem. 2020; 22: 5599
- 6b Dong J, Yue F, Song H, Liu Y, Wang Q. Chem. Commun. 2020; 56: 12652
- 6c Dong J, Lyu X, Wang Z, Wang X, Song H, Liu Y, Wang Q. Chem. Sci. 2019; 10: 976
- 7 Yao L, Zhu D, Wang L, Liu J, Zhang Y, Li P. Chin. Chem. Lett. 2021; 32: 4033
- 8a Gui Q.-W, Teng F, Yang H, Xun C, Huang W.-J, Lu Z.-Q, Zhu M.-X, Ouyang W.-T, He W.-M. Chem. Asian J. 2022; 17: e202101139
- 8b Teng F, Du J, Xun C, Zhu M, Lu Z, Jiang H, Chen Y, Li Y, Gui Q.-W. Org. Biomol. Chem. 2021; 19: 8929
- 8c Gui Q.-W, Teng F, Li Z.-C, Xiong Z.-Y, Jin X.-F, Lin Y.-W, Cao Z, He W.-M. Chin. Chem. Lett. 2021; 32: 1907
- 8d Gui Q.-W, Teng F, Yu P, Wu Y.-F, Nong Z.-B, Yang L.-X, Chen X, Yang T.-B, He W.-M. Chin. J. Catal. 2023; 44: 111
- 8e Liu X, Cai T.-c, Zhu M, Liu Y, Xia J, Xie J, Wen L, Gui Q.-W, Yin Y. J. Org. Chem. 2023; 88: 12311
- 8f Liu X, Cai T.-C, Guo D, Nong Z, Yang Y, Li Q, Jiang H, Liu X, Gui Q.-W. Chem. Commun. 2022; 58: 657
- 9 Togo H. Advanced Free Radical Reactions for Organic Synthesis. Elsevier; Amsterdam: 2004
- 10 Pitzer L, Schäfers F, Glorius F. Angew. Chem. Int. Ed. 2019; 58: 8572
- 11 Hopkinson MN, Gomez-Suarez A, Tederes M, Sahoo B, Glorius F. Angew. Chem. Int. Ed. 2016; 55: 4361
For selected reviews, see:
For selected revisions on indole synthesis or functionalization, see:
For selected reviews, see:
For reviews on the Minisci reaction, see: