Synlett 2025; 36(06): 689-694 DOI: 10.1055/s-0043-1775135
Visible-Light-Mediated Photoredox Radical Cyclization Reaction with Alkyl Boronic Acids Using Molecular Oxygen as a Sole Oxidant
Xuanlin Qin
,
Jingting Yan
,
Li Guo
,
Jie Yao
,
Yanxue Shang
,
Yuxuan Liu
,
Xi Chen
,
Xia Wang∗
,
We thank the Hunan Province Science Foundation for Youths (2023JJ40308), the Science and Technology Innovation Program of Hunan Province (2021RC2079), the China Postdoctoral Science Foundation (2022T150075 and 2022M720541), the Scientific Research Project of the Education Department of Hunan Province (22B0212 and 23C0066), the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (TSBI-CIP-CXRC-038), and the National College Students Innovation and Entrepreneurship Training Program (S202210537024).
Abstract
Indolo[2,1-b]quinazolin-12(6H)-one derivatives are prevalent in many synthetic intermediates, pharmaceuticals, and organic materials. Herein, we developed a photoredox radical cascade cyclization reaction that uses visible light as the primary energy input to promote the reaction, leading to a series of indolo[2,1-b]quinazolin-12(6H)-one derivatives under oxygen conditions.
Key words
photoredox -
radical cyclization -
molecular oxygen -
indolo[2,1-b]quinazolin-12(6H)-one derivatives -
metal-free
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775135.
Supporting Information
Publication History
Received: 04 July 2024
Accepted after revision: 26 August 2024
Article published online: 07 October 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
For selected reviews, see:
1a
Ishikura M,
Yamada K.
Nat. Prod. Rep. 2009; 26: 803
1b
Kochanowska-Karamyan AJ,
Hamann MT.
Chem. Rev. 2010; 110: 4489
1c
Zhang M.-Z,
Chen Q,
Yang G.-F.
Eur. J. Med. Chem. 2015; 89: 421
For selected revisions on indole synthesis or functionalization, see:
2a
Barluenga J,
Rodríguez F,
Fañanas FJ.
Chem. Asian J. 2009; 4: 1036
2b
Bandini M,
Eichholzer A.
Angew. Chem. Int. Ed. 2009; 48: 9608
2c
Cacchi S,
Fabrizi G.
Chem. Rev. 2011; 111: PR215
2d
Shiri M.
Chem. Rev. 2012; 112: 3508
2e
Inman M,
Moody CJ.
Chem. Sci. 2013; 4: 29
2f
Suárez A,
Gohain M,
Fernández-Rodríguez MA,
Sanz R.
J. Org. Chem. 2015; 80: 10421
3a
Chen X,
Liu B,
Pei C,
Li J,
Zou D,
Wu Y,
Wu Y.
Org. Lett. 2021; 23: 7787
3b
Yang J,
Sun B,
Ding H,
Huang P.-Y,
Tang X.-L,
Shi R.-C,
Yan Z.-Y,
Yu C.-M,
Can J.
Green Chem. 2021; 23: 575
3c
Sun B,
Huang P,
Yan Z,
Shi X,
Tang X,
Yang J,
Jin C.
Org. Lett. 2021; 23: 1026
3d
Sun B,
Ding H,
Tian H.-X,
Huang P.-Y,
Jin C,
Wu C.-L,
Shen R.-P.
Adv. Synth. Catal. 2022; 364: 766
3e
Yang Z,
Shan Y,
Yu J.-T,
Pan C.
Eur. J. Org. Chem. 2021; 5382
3f
Liu H,
Yang Z,
Huang G,
Yu J.-T,
Pan C.
New J. Chem. 2022; 46: 1347
3g
Sun B,
Shi R,
Zhang K,
Tang X,
Shi X,
Xu J,
Yang J,
Jin C.
Chem. Commun. 2021; 57: 6050
3h
García-Ramírez J,
Miranda LD.
Synthesis 2021; 53: 1471
3i
Sun B,
Tang X,
Shi R,
Yan Z,
Li B,
Tang C,
Jin C,
Wu C,
Sun RP.
Asian J. Org. Chem. 2021; 10: 3390
For selected reviews, see:
4a
Xuan J,
Xiao W.-J.
Angew. Chem. Int. Ed. 2012; 51: 6828
4b
Narayanam JM. R,
Stephenson CR. J.
Chem. Soc. Rev. 2011; 40: 102
4c
Prier CK,
Rankic DA,
MacMilllan DW. C.
Chem. Rev. 2013; 113: 5322
For reviews on the Minisci reaction, see:
5a
Tauber J,
Imbr D,
Opatz T.
Molecules 2014; 19: 16190
5b
Minisci F,
Vismara E,
Fontana F.
Heterocycles 1989; 28: 489
5c
Minisci F,
Fontana F,
Vismara E.
J. Heterocycl. Chem. 1990; 27: 79
5d
Duncton MA.
J. Med. Chem. Commun. 2011; 2: 1135
5e
Dong J,
Liu Y,
Wang Q.
Chin. J. Org. Chem. 2021; 41: 3771
6a
Dong J,
Yue F,
Xu W,
Song H,
Liu Y,
Wang Q.
Green Chem. 2020; 22: 5599
6b
Dong J,
Yue F,
Song H,
Liu Y,
Wang Q.
Chem. Commun. 2020; 56: 12652
6c
Dong J,
Lyu X,
Wang Z,
Wang X,
Song H,
Liu Y,
Wang Q.
Chem. Sci. 2019; 10: 976
7
Yao L,
Zhu D,
Wang L,
Liu J,
Zhang Y,
Li P.
Chin. Chem. Lett. 2021; 32: 4033
8a
Gui Q.-W,
Teng F,
Yang H,
Xun C,
Huang W.-J,
Lu Z.-Q,
Zhu M.-X,
Ouyang W.-T,
He W.-M.
Chem. Asian J. 2022; 17: e202101139
8b
Teng F,
Du J,
Xun C,
Zhu M,
Lu Z,
Jiang H,
Chen Y,
Li Y,
Gui Q.-W.
Org. Biomol. Chem. 2021; 19: 8929
8c
Gui Q.-W,
Teng F,
Li Z.-C,
Xiong Z.-Y,
Jin X.-F,
Lin Y.-W,
Cao Z,
He W.-M.
Chin. Chem. Lett. 2021; 32: 1907
8d
Gui Q.-W,
Teng F,
Yu P,
Wu Y.-F,
Nong Z.-B,
Yang L.-X,
Chen X,
Yang T.-B,
He W.-M.
Chin. J. Catal. 2023; 44: 111
8e
Liu X,
Cai T.-c,
Zhu M,
Liu Y,
Xia J,
Xie J,
Wen L,
Gui Q.-W,
Yin Y.
J. Org. Chem. 2023; 88: 12311
8f
Liu X,
Cai T.-C,
Guo D,
Nong Z,
Yang Y,
Li Q,
Jiang H,
Liu X,
Gui Q.-W.
Chem. Commun. 2022; 58: 657
9
Togo H.
Advanced Free Radical Reactions for Organic Synthesis. Elsevier; Amsterdam: 2004
10
Pitzer L,
Schäfers F,
Glorius F.
Angew. Chem. Int. Ed. 2019; 58: 8572
11
Hopkinson MN,
Gomez-Suarez A,
Tederes M,
Sahoo B,
Glorius F.
Angew. Chem. Int. Ed. 2016; 55: 4361
12a
Xie S,
Li D,
Huang H,
Zhang F,
Chen Y.
J. Am. Chem. Soc. 2019; 141: 16237
12b
Candish L,
Teders M,
Glorius F.
J. Am. Chem. Soc. 2017; 139: 7440
12c
Zhang L,
Jiao L.
J. Am. Chem. Soc. 2017; 139: 607
12d
Zhang L,
Liu Z.-Q.
Org. Lett. 2017; 19: 6594