Synlett
DOI: 10.1055/s-0043-1775388
letter

Direct Synthesis of N-Substituted Phosphinecarboxamides from [TBA][P(SiCl3)2] and Isonitriles

Bo Yang
,
Xin Wang
,
Yao Chai
,
Wen-Bo Xu
,
Ya-Ling Tian
,
Yong-Jun Ma
,
Anwar I. Alduma
,
Xin-Rui Cao
,
Xi-Cun Wang
,
Dong-Ping Chen
,
Zheng-Jun Quan
We thank the National Natural Science Foundation of China (Nos. 22061038, 22067018 and 21562036) for financial support.


Abstract

In this investigation, N-substituted phosphinecarboxamides were produced through the reaction of [TBA][P(SiCl3)2] with isonitriles. This method capitalizes on the flexibility of isonitriles as a source of both nitrogen and carbonyl groups, offering a novel route to the generation of PH2-type compounds. This approach is characterized by rapid reaction times, simple procedural requirements, compatibility with a diverse array of substrates, and the conversion of [TBA][P(SiCl3)2] into organic phosphorus compounds. Additionally, we systematically studied the reaction mechanism of isonitrile with [TBA][P(SiCl3)2] through controlled experiments and density functional theory (DFT) calculations.

Supporting Information



Publication History

Received: 11 June 2024

Accepted after revision: 15 July 2024

Article published online:
29 August 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Asamizu T, Henderson W, Nicholson BK, Hey-Hawkins E. Inorg. Chim. Acta 2014; 414: 181
    • 2a Zhang Y, Wang X, Wang Y, Yuan D, Yao Y. Dalton Trans. 2018; 47: 9090
    • 2b Basalov IV, Liu B, Roisnel T, Cherkasov AV, Fukin GK, Carpentier J.-F, Sarazin Y, Trifonov AA. Organometallics 2016; 35: 3261
    • 2c Kissel AA, Mahrova TV, Lyubov DM, Cherkasov AV, Fukin GK, Trifonov AA, Del Rosal I, Maron L. Dalton Trans. 2015; 44: 12137
    • 2d Basalov IV, Dorcet V, Fukin GK, Carpentier J.-F, Sarazin Y, Trifonov AA. Chem. Eur. J. 2015; 21: 6033
    • 2e Basalov IV, Roşca SC, Lyubov DM, Selikhov AN, Fukin GK, Sarazin Y, Carpentier J.-F, Trifonov AA. Inorg. Chem. 2014; 53: 1654
    • 2f Garner ME, Parker BF, Hohloch S, Bergman RG, Arnold J. J. Am. Chem. Soc. 2017; 139: 12935
    • 2g Ghebreab MB, Bange CA, Waterman R. J. Am. Chem. Soc. 2014; 136: 9240
    • 2h Bange CA, Waterman R. ACS Catal. 2016; 6: 6413
    • 2i Bange CA, Ghebreab MB, Ficks A, Mucha NT, Higham L, Waterman R. Dalton Trans. 2016; 45: 1863
    • 3a Pillarsetty N, Raghuraman K, Barnes CL, Katti KV. J. Am. Chem. Soc. 2005; 127: 331
    • 3b Davies LH, Stewart B, Harrington RW, Clegg W, Higham LJ. Angew. Chem. Int. Ed. 2012; 51: 4921
    • 3c Guterman R, Rabiee Kenaree A, Gilroy JB, Gillies ER, Ragogna PJ. Chem. Mater. 2015; 27: 1412
  • 4 Jupp AR, Goicoechea JM. J. Am. Chem. Soc. 2013; 135: 19131
  • 5 Wu Y.-H, Li Z.-F, Wang W.-P, Wang X.-C, Quan Z.-J. Eur. J. Org. Chem. 2017; 5546
    • 6a Wu Y.-H, Wu Q.-L, Wang W.-P, Wang X.-C, Quan Z.-J. Adv. Synth. Catal. 2018; 360: 2382
    • 6b Wu Q.-L, Chen X.-G, Huo C.-D, Wang X.-C, Quan Z.-J. New J. Chem. 2019; 43: 1531
  • 7 Hou F, Du X.-P, Alduma AI, Li Z.-F, Huo C.-D, Wang X.-C, Wu X.-F, Quan Z.-J. Adv. Synth. Catal. 2020; 362: 4755
  • 8 Wang W.-P, Cui X.-H, Li M, Wang X.-C, Quan Z.-J. Asian J. Org. Chem. 2022; 11: e202200124
  • 9 Chen X.-G, Wu Q.-L, Hou F, Wang X.-C, Quan Z.-J. Synlett 2019; 30: 73
  • 10 Jupp AR, Trott G, Payen de la Garanderie É, Holl JD. G, Carmichael D, Goicoechea JM. Chem. Eur. J. 2015; 21: 8015
  • 11 Robinson TP, Goicoechea JM. Chem. Eur. J. 2015; 21: 5727
  • 12 Xu W.-B, Li M, Chai Y, Tian Y.-l, Wang X.-C, Quan Z.-J. Asian J. Org. Chem. 2024; e202400178
    • 13a Geeson MB, Cummins CC. Science 2018; 359: 1383
    • 13b Geeson MB, Ríos P, Transue WJ, Cummins CC. J. Am. Chem. Soc. 2019; 141: 6375
    • 13c Geeson MB, Tanaka K, Taakili R, Benhida R, Cummins CC. J. Am. Chem. Soc. 2022; 144: 14452
    • 14a Van Lommel R, Verschueren RH, De Borggraeve WM, De Vleeschouwer F, Stuyver T. Org. Lett. 2022; 24: 1
    • 14b Song B, Xu B. Chem. Soc. Rev. 2017; 46: 1103
    • 14c Zhang B, Studer A. Chem. Soc. Rev. 2015; 44: 3505
    • 14d Vlaar T, Ruijter E, Maes BU. W, Orru RV. A. Angew. Chem. Int. Ed. 2013; 52: 7084
    • 14e Qiu G, Ding Q, Wu J. Chem. Soc. Rev. 2013; 42: 5257
    • 14f Lang S. Chem. Soc. Rev. 2013; 42: 4867
    • 15a Zhang Q, Wang X, Chen S.-W, Tang M, Zhang Q, Xia Y. Eur. J. Org. Chem. 2023; 26: e202300779
    • 15b Mishra D, Rajkhowa S, Phukan P. iScience 2023; 26: 107258
    • 15c Goswami D, Mishra D, Phukan P. Mol. Diversity 2023; 27: 2545
    • 15d Chang W, Lei Z, Yang Y, Dai S, Feng J, Yang J, Zhang Z. Org. Lett. 2023; 25: 1392
    • 15e Hazarika D, Borah AJ, Phukan P. Chem. Commun. 2019; 55: 1418
    • 15f Fang Y, Yang J.-M, Zhang R, Wang S.-Y, Ji S.-J. Org. Chem. Front. 2019; 6: 3383
    • 15g Gu Z.-Y, Liu Y, Wang F, Bao X, Wang S.-Y, Ji S.-J. ACS Catal. 2017; 7: 3893
    • 15h Zhu T.-H, Wang S.-Y, Wei T.-Q, Ji S.-J. Adv. Synth. Catal. 2015; 357: 823
    • 16a Banjare SK, Lezius L, Horst ES, Leifert D, Daniliuc CG, Alasmary F, Studer A. Angew. Chem. Int. Ed. 2024; e202404275
    • 16b Ma C, Li X, Chen X, He X, Zhang S.-T, Jiang Y.-Q, Yu B. Org. Lett. 2023; 25: 8016
    • 16c Yuan Q, Liu H.-W, Cai Z.-J, Ji S.-J. ACS Omega 2021; 6: 8495
    • 16d Liu Y, Chen X.-L, Li X.-Y, Zhu S.-S, Li S.-J, Song Y, Qu L.-B, Yu B. J. Am. Chem. Soc. 2021; 143: 964
    • 16e Zhang B, Daniliuc CG, Studer A. Org. Lett. 2014; 16: 250
    • 16f Hirai T, Han L.-B. J. Am. Chem. Soc. 2006; 128: 7422
  • 17 Synthesis of N-Substituted Phosphinecarboxamides: In a glove box, NCS (0.25 mmol, 1.25 equiv) was added to isonitrile compound 2 (0.25 mmol, 1.25 equiv), followed by the addition of DME (1 mL) and the mixture was stirred until homogeneous. DME (1 mL) was then added to the weighed [TBA][P(SiCl3)2] 1 (0.2 mmol, 1 equiv) and allowed to dissolve completely. The mixture of isonitrile 2 and NCS was then added to the solution of 1 via syringe and stirred for 5 min at 0 °C. Finally, H2O (0.83 mmol, 4.15 equiv) was added, and stirring was continued for 2 min. The suspension was then analyzed by TLC. Upon completion, the aqueous phase was extracted with ethyl acetate (3 × 10 mL). The combined organic phases were dried with anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 10:1–7:1) to give compound 3.
    • 18a Luo H, Li M, Wang X.-C, Quan Z.-J. Org. Biomol. Chem. 2023; 21: 2499
    • 18b Schäfer RJ. B, Monaco MR, Li M, Tirla A, Rivera-Fuentes P, Wennemers H. J. Am. Chem. Soc. 2019; 141: 18644
    • 18c Bora P, Bez G. Chem. Commun. 2018; 54: 8363
    • 18d Zhang H, Shi D, Ren S, Jin H, Liu Y. Eur. J. Org. Chem. 2016; 4224
    • 18e Mishra D, Borah AJ, Phukan P, Hazarika D, Phukan P. Chem. Commun. 2020; 56: 8408
    • 18f Kühle E, Anders B, Klauke E, Tarnow H, Zumach G. Angew. Chem. Int. Ed. Engl. 1969; 8: 20
    • 18g Demjén A, Angyal A, Wölfling J, Puskás LG, Kanizsai I. Org. Biomol. Chem. 2018; 16: 2143