Subscribe to RSS
DOI: 10.1055/s-0043-1775442
Rhodium(III)-Catalyzed C–C Bond Formation by Direct C–H Activation
This work was supported by the National Natural Science Foundation of China (22271062).

Abstract
Transition-metal-catalyzed functionalizations of C–H bonds to construct C–C bonds represent an ideal route in the synthesis of valuable organic molecules. In particular, rhodium(III)-catalyzed C–H bond activation offers an attractive strategy due to its efficiency and step economy for direct functionalization in organic synthesis. Consequently, recent developments in this area have assured a high level of regioselectivity in C–H functionalization reactions. In this Account, we have summarized our recent achievements in the functionalizations of sp2- and sp3-C–H bonds using rhodium catalyst. The scope, limitation, and mechanism of these reactions have been described briefly.
1 Introduction
2 C–H Arylation
2.1 Aromatic C(sp2)–H Arylation
2.2 Benzylic C(sp3)–H Arylation
2.3 Olefinic C(sp2)–H Arylation
3 Olefinic C(sp2)–H Alkenylation and Alkylation
4 Olefinic C(sp2)–H Heteroarylation
5 Conclusion
Key words
rhodium(III)-catalyzed - C–H activation - arylation - alkenylation - alkylation - heteroarylationPublication History
Received: 25 December 2024
Accepted: 09 January 2025
Article published online:
18 February 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Lam NY. S, Wu K, Yu J.-Q. Angew. Chem. Int. Ed. 2021; 60: 15767
- 1b Lan F, Zhou C, Huang X, An B, Zhang X. Green Chem. 2022; 24: 2391
- 1c Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
- 2a Ackermann L. Chem. Rev. 2011; 111: 1315
- 2b Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
- 2c Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
- 2d Liu B, Yang L, Li P, Wang F, Li X. Org. Chem. Front. 2021; 8: 1085
- 2e Kasera A, Biswas JP, Alshehri AA, Al-Thabaiti SA, Mokhtar M, Maiti D. Coord. Chem. Rev. 2023; 475: 214915
- 2f Mandal D, Roychowdhury S, Biswas JP, Maiti S, Maiti D. Chem. Soc. Rev. 2022; 51: 7358
- 3a Tan G, Das M, Maisuls I, Strassert CA, Glorius F. Angew. Chem. Int. Ed. 2021; 60: 15650
- 3b Patureau FW, Besset T, Glorius F. Angew. Chem. Int. Ed. 2011; 50: 1064
- 3c Zhu W, Gunnoe TB. ACS Catal. 2020; 10: 11519
- 3d Hu X.-H, Yang X.-F, Loh T.-P. ACS Catal. 2016; 6: 5930
- 3e Bera M, Agasti S, Chowdhury R, Mondal R, Pal D, Maiti D. Angew. Chem. Int. Ed. 2017; 56: 5272
- 4a Wang X, Yu D.-G, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 10280
- 4b Yuan C, Tu G, Zhao Y. Org. Lett. 2017; 19: 356
- 4c Wang H, Yu S, Qi Z, Li X. Org. Lett. 2015; 17: 2812
- 4d Peng P, Wang J, Jiang H, Liu H. Org. Lett. 2016; 18: 5376
- 4e Lu M.-Z, Wang C.-Q, Song S.-J, Loh T.-P. Org. Chem. Front. 2017; 4: 303
- 5a Rej S, Chatani N. Angew. Chem. Int. Ed. 2019; 58: 8304
- 5b Tsang YL, Choy PY, Leung MP, He X, Kwong FY. Org. Chem. Front. 2022; 9: 1992
- 5c Zhu W, Gunnoe TB. Acc. Chem. Res. 2020; 53: 920
- 5d Song G, Li X. Acc. Chem. Res. 2015; 48: 1007
- 5e Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
- 6a Mason JS, Morize I, Menard PR, Cheney DL, Hulme C, Labaudiniere RF. J. Med. Chem. 1999; 42: 3251
- 6b Nicolaou KC, Pfefferkorn JA, Roecker AJ, Cao G, Barluenga S, Mitchell HJ. J. Am. Chem. Soc. 2000; 122: 9939
- 6c Knölker H, Reddy KR. Chem. Rev. 2002; 102: 4303
- 6d Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
- 6e Bell MG, Gernert DL, Grese TA, Belvo MD. Borromeo P. S. Kelley S. A, Kennedy JH, Kolis SP, Lander PA, Richey R. J. Med. Chem. 2007; 50: 6443
- 7a Jiao L.-Y, Oestreich M. Org. Lett. 2013; 15: 5374
- 7b Yang X.-F, Hu X.-H, Feng C, Loh T.-P. Chem. Commun. 2015; 51: 2532
- 7c Yi CS, Yunand SY, Guzei IA. J. Am. Chem. Soc. 2005; 127: 5782
- 7d Kim Y, Park J, Chang S. Org. Lett. 2016; 18: 1892
- 7e Shah TA, De PB, Pradhan S, Punniyamurthy T. Chem. Commun. 2019; 55: 572
- 8a Kalyani D, Deprez NR, Desai LV, Sanford MS. J. Am. Chem. Soc. 2005; 127: 7330
- 8b Shi Z, Li B, Wan X, Cheng J, Fang Z, Cao B, Qin C, Wang Y. Angew. Chem. Int. Ed. 2007; 46: 5554
- 8c Jiao LY, Smirnov P, Oestreich M. Org. Lett. 2014; 16: 6020
- 8d Luo H, Liu H, Zhang Z, Xiao Y, Wang S, Luo X, Wang K. RSC Adv. 2016; 6: 39292
- 9 Hatanaka Y, Hiyama T. J. Org. Chem. 1988; 53: 918
- 10a Komiyama T, Minami Y, Hiyama T. ACS Catal. 2017; 7: 631
- 10b Denmark SE, Ambrosi A. Org. Process Res. Dev. 2015; 19: 982
- 10c Nakao Y, Hiyama T. Chem. Soc. Rev. 2011; 40: 4893
- 10d Denmark SE, Regens CS. Acc. Chem. Res. 2008; 41: 1486
- 10e Sore HF, Galloway WR. J. D, Spring DR. Chem. Soc. Rev. 2012; 41: 1845
- 11 Luo H, Xie Q, Sun K, Deng J, Xu L, Wang K, Luo X. RSC Adv. 2019; 9: 18191
- 12 Li H, Jie J, Wu S, Yang X, Xu H. Org. Chem. Front. 2017; 4: 250
- 13a Luo H, Dong W. Synth. Commun. 2013; 43: 2733
- 13b Sugiyama A, Ohnishi Y, Nakaoka M, Nakao Y, Sato H, Sakaki S, Nakao Y, Hiyama T. J. Am. Chem. Soc. 2008; 130: 12975
- 14a Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
- 14b Huff BE, Staszak MA. Tetrahedron Lett. 1993; 34: 8011
- 14c Gao D.-W, Vinogradova EV, Nimmagadda SK, Medina JM, Xiao Y, Suciu RM, Cravatt BF, Engle KM. J. Am. Chem. Soc. 2018; 140: 8069
- 14d Yan G, Zhang Y, Wang J. Adv. Synth. Catal. 2017; 359: 4068
- 14e Mouselmani R, Hachem A, Alaaeddine A, Métay E, Lemaire M. Org. Biomol. Chem. 2018; 16: 6600
- 15a DeSchepper RE, Swenton JS. Tetrahedron Lett. 1985; 26: 4831
- 15b Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
- 15c García-López J.-A, Greaney MF. Chem. Soc. Rev. 2016; 45: 6766
- 15d Fan Z, Bay KL, Chen X, Zhuang Z, Park HS, Yeung K.-S, Houk KN, Yu J.-Q. Angew. Chem. Int. Ed. 2020; 59: 4770
- 16 Zhang X, Zhang F, Li X, Lu M.-Z, Meng X, Huang L, Luo H. Org. Lett. 2022; 24: 5029
- 17 Zhang X, Zhang J, Li L, Zhang F, Luo X, Luo H. New J. Chem. 2023; 47: 6536
- 18 He J, Takise R, Fu H, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 4618
- 19 Dhiman AK, Thakur A, Kumar R, Sharma U. Asian J. Org. Chem. 2020; 9: 1502
- 20 Li L, Liu H, Qian Y, Shen G, Shi Y, Du J, Luo H. Chin. J. Chem. 2024; 42: 2627
- 21 Lapointe D, Fagnou K. Chem. Lett. 2010; 39: 1118
- 22a Carbery DR. Org. Biomol. Chem. 2008; 6: 3455
- 22b Gopalaiah K, Kagan HB. Chem. Rev. 2011; 111: 4599
- 23a Zhu T, Xie S, Rojsitthisak P, Wu J. Org. Biomol. Chem. 2020; 18: 1504
- 23b Gigant N, Chausset-Boissarie L, Gillaizeau I. Chem. Eur. J. 2014; 20: 7548
- 23c Lu M.-Z, Goh J, Maraswami M, Jia Z, Tian J.-S, Loh T.-P. Chem. Rev. 2022; 122: 17479
- 24 Pankajakshan S, Xu Y.-H, Cheng JK, Low MT, Loh T.-P. Angew. Chem. Int. Ed. 2012; 51: 5701
- 25 Li X, Sun K, Shen W, Zhang Y, Lu M.-Z, Luo X, Luo H. Org. Lett. 2021; 23: 31
- 26 Ahlsten N, Bartoszewicz A, Martín-Matute B. Dalton Trans. 2012; 41: 1660
- 27a Sundararaju B, Achard M, Bruneau C. Chem. Soc. Rev. 2012; 41: 4467
- 27b Butt NA, Zhang W. Chem. Soc. Rev. 2015; 44: 7929
- 27c Hu X.-Q, Hu Z, Trita AS, Zhang G, Gooßen LJ. Chem. Sci. 2018; 9: 5289
- 27d Kumar GS, Chand T, Singh D, Kapur M. Org. Lett. 2018; 20: 4934
- 28a Nipate DS, Meena N, Swami PN, Rangan K, Kumar A. Chem. Commun. 2024; 60: 344
- 28b Kalsi D, Laskar RA, Barsu N, Premkumar JR, Sundararaju B. Org. Lett. 2016; 18: 4198
- 28c Khake SM, Chatani N. ACS Catal. 2022; 12: 4394
- 29 Pradhan S, Mishra M, De PB, Banerjee S, Punniyamurthy T. Org. Lett. 2020; 22: 1720
- 30 Li X, Liu J, Song R, Luo X, Luo H. Org. Lett. 2024; 26: 3673
- 31a Kabir E, Uzzaman M. Results Chem. 2022; 4: 100606
- 31b Yu H, Xu F. RSC Adv. 2023; 13: 8238
- 31c Sharma S, Kumar D, Singh G, Monga V, Kumar B. Eur. J. Med. Chem. 2020; 200: 112438
- 32 Li X, Luo H, Song R, Zhang Y, Gong X, Cai Hu, Luo X. Org. Lett. 2023; 25: 5262
For selected reviews, see:
For selected reports, see:
For selected reviews, see:
For selected reports, see:
For selected examples, see: