Plant Biol (Stuttg) 2000; 2(4): 396-402
DOI: 10.1055/s-2000-5956
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Effect of Salt Stress on Carbon Metabolism and Bacteroid Respiration in Root Nodules of Common Bean (Phaseolus vulgaris L.)

A. Ferri, C. Lluch, A. Ocaña
  • Departamento de Biología Vegetal, Facultad de Ciencias, Universidad de Granada, Granada, Spain
Weitere Informationen

Publikationsverlauf

February 25, 2000

May 16, 2000

Publikationsdatum:
31. Dezember 2000 (online)

Abstract

In the present work, we examined the effect of salinity on growth, N fixation and carbon metabolism in the nodule cytosol and bacteroids of Phaseolus vulgaris, and measured the O2 consumption by bacteroids incubated with or without the addition of exogenous respiratory substrates. The aim was to ascertain whether the compounds that accumulate under salt stress can increase bacteroid respiration and whether this capacity changes in response to salinity in root nodules of Phaseolus vulgaris. The plants were grown in a controlled environment chamber, and 50, 100 mM or no NaCl (control) was added to the nutrient solution. Two harvests were made, at the vegetative growth period and at the beginning of the reproductive period. The enzyme activities in the nodule cytosol were reduced by the salt treatments, while in the bacteroid cytosol the enzyme activities increased at high salt concentrations at the first harvest and for ADH in all treatments. The data presented here confirm that succinate and malate are the preferred substrates for bacteroid respiration in common bean, but these bacteroids may also utilize glucose, either in control or under saline conditions. The addition of proline or lactate to the incubation medium significantly raised oxygen consumption in the bacteroids isolated from plants treated with salt.

Abbreviations

ARA: acetylene reduction activity

PEPC: phosphoenol pyruvate carboxylase

MDH: malate dehydrogenase

ADH: alcohol dehydrogenase

ICDH: isocitrate dehydrogenase

PDW: plant dry weight

RSR: root-shoot ratio

NDW: nodule dry weight

References

  • 01 Bekki,  A.,, Trinchant,  J. C.,, and Rigaud,  J.. (1987);  Nitrogen fixation (C2H2 reduction) by Medicago nodules and bacteroids under sodium chloride stress.  Physiologia Plantarum. 71 61-67
  • 02 Bordeleau,  L. M., and Prévost,  D.. (1994);  Nodulation and nitrogen fixation in extreme environments.  Plant and Soil. 161 115-125
  • 03 Bradford,  M. M.. (1976);  A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye-binding.  Analitical Biochemistry. 72 248-254
  • 04 Canino,  S.,, Nieri,  B.,, Pistelli,  L.,, Alpi,  A.,, and De Bellis,  L.. (1996);  NADP+-isocitrate dehydrogenase in germinating cucumber cotyledons: Purification and characterization of a cytosolic isoenzyme.  Physiologia Plantarum. 98 13-19
  • 05 Cordovilla,  M. P.,, Ligero,  F.,, and Lluch,  C.. (1999);  Effects of NaCl on growth and nitrogen fixation and assimilation of inoculated and KNO3 fertilized Vicia faba L. and Pisum sativum L. plants.  Plant Science. 140 127-136
  • 06 Delgado,  M. J.,, Garrido,  J. M.,, Ligero,  F.,, and Lluch,  C.. (1993);  Nitrogen fixation and carbon metabolism by nodules and bacteroids of pea plants under sodium chloride stress.  Physiologia Plantarum. 89 824-829
  • 07 Fougère,  F.,, Le Rudulier,  D.,, and Streeter,  J. G.. (1991);  Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots bacteroids and cytosol of alfalfa (Medicago sativa L.).  Plant Physiology. 96 1228-1236
  • 08 Glenn,  A. R., and Dilworth,  M. J.. (1981);  The uptake and hydrolysis of disaccharides by fast- and slow-growing species of Rhizobium. .  Archives of Microbiology. 129 233-239
  • 09 Hafeez,  F. Y.,, Aslam,  Z.,, and Malik,  K. A.. (1988);  Effect of salinity and inoculation on growth, nitrogen fixation and nutrient uptake of Vigna radiata L. Wilczek.  Plant and Soil. 106 3-8
  • 10 Herdina, and Silsbury,  J. H.. (1990);  Estimating nitrogenase activity of Faba bean (Vicia faba L.) by acetylene reduction (AR) assay.  Australian Journal of Plant Physiology. 17 489-502
  • 11 Herrada,  G.,, Puppo,  A.,, and Rigaud,  J.. (1989);  Uptake of metabolites by bacteroid-containing vesicles and by free bacteroids from french bean nodules.  Journal of General Microbiology. 135 3165-3177
  • 12 Hudman,  J. F., and Glenn,  A. R.. (1980);  Glucose uptake by free living and bacteroid forms of Rhizobium leguminosarum. .  Arch. Microbiol.. 128 72-77
  • 13 Irigoyen,  J. J.,, Emerich,  D. W.,, and Sánchez-Díaz,  M.. (1992);  Phosphoenol pyruvate carboxylase malate and alcohol dehydrogenase activities in alfalfa (Medicago sativa) nodules under water stress.  Physiologia Plantarum. 84 61-66
  • 14 Kaur,  K., and Singh,  R.. (1999);  Sugar metabolism and partitioning in cytosol and bacteroid fractions of chickpea nodules.  Plant Physiology and Biochemistry. 37 685-692
  • 15 Kohl,  D. H.,, Straub,  P. F.,, and Shearer,  G.. (1994);  Does proline play a special role in bacteroid metabolism?.  Plant Cell and Environment. 17 1257-1262
  • 16 Kretovich,  W. L.,, Romanov,  V.,, Abdullaeva,  B. R.,, and Ivanov,  B. F.. (1985);  14C-glucose utilization by Rhizobium lupini bacteroids.  Plant and Soil. 85 211-217
  • 17 Läuchli,  A.. (1984) Salt exclusion: an adaptation of legumes for crops and pastures under saline conditions. Salinity tolerance in plant-strategies for crop improvement. Staples, C. and Toenniessen, G. H., eds. New York; J. Wiley and Sons pp. 171-188
  • 18 Ligero,  F.,, Lluch,  C.,, and Olivares,  J.. (1986);  Evolution of ethylene from root of Medicago sativa plants inoculated with Rhizobium meliloti. .  Journal of Plant Physiology. 125 361-365
  • 19 Markwell,  M. A. K.,, Hass,  S. M.,, Bieber,  L. L.,, and Tolberg,  N. E.. (1978);  A modification of the Lowry procedure to symply protein determination.  Analytical Biochemistry. 87 206-210
  • 20 Munns,  R.. (1993);  Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses.  Plant Cell and Environment. 16 15-24
  • 21 Pedersen,  A. L.,, Feldner,  H. C.,, and Rosendahl,  L.. (1996);  Effect of proline on nitrogenase activity in symbiosomes from root nodules of soybean (Glycine max L.) subjected to drought stress.  Journal of Experimental Botany. 47 1533-1539
  • 22 Rigaud,  J., and Puppo,  A.. (1975);  Indole-3-acetic acid catabolism by soybean bacteroids.  Journal of General Microbiology. 88 223-228
  • 23 Salminen,  S. O., and Streeter,  J. G.. (1987);  Involvement of glutamate in the respiratory metabolism of Bradyrhizobium japonicum bacteroids.  Journal of Bacteriology. 169 495-499
  • 24 Serraj,  R.,, Roy,  G.,, and Drevon,  J. J.. (1994);  Salt stress induces a decrease in the oxygen uptake of soybean nodules and their permeability to oxigen diffusion.  Physiologia Plantarum. 91 161-168
  • 25 Singleton,  P. W., and Bohlool,  B. B.. (1984);  Effect of salinity on nodule formation by soybean.  Plant Physiology. 74 72-76
  • 26 Soussi,  M.,, Lluch,  C.,, and Ocaña,  A.. (1999);  Comparative study of nitrogen fixation and carbon metabolism in two chick-pea cultivars under salt stress.  Journal of Experimental Botany. 49 1329-1337
  • 27 Soussi,  M.,, Ocaña,  A.,, and Lluch,  C.. (1998);  Effect of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.).  Journal of Experimental Botany. 49 1329-1337
  • 28 Statgraphics . (1992) User Manual, version 6. Cambridge, MA, USA; Manugistics
  • 29 Thynn,  M., and Werner,  D.. (1996);  Chickpea root and nodule alcohol dehydrogenase activities as very reactive systems monitoring oxygen concentrations.  Journal of Applied Botany-Angew. Bot.. 70 185-187
  • 30 Trinchant,  J. C., and Rigaud,  J.. (1987);  Acetylene reduction by bacteroids isolated from stem nodules of Sesbania rostrata. Specific role of lactate as an energy-yielding substrate.  Journal of General Microbiology. 133 37-43
  • 31 Trinchant,  J. C.,, Birot,  A. M.,, and Rigaud,  J.. (1981);  Oxygen supply and energy-yielding substrates for nitrogen fixation (acetylene reduction) by bacteroid preparations.  Journal of General Microbiology. 125 159-165
  • 32 Udvardi,  M. K., and Day,  D. A.. (1997);  Metabolite transport across symbiotic membranes of legume nodules.  Annual Review of Plant Physiology and Plant Molecular Biology. 48 493-523
  • 33 Udvardi,  M. K.,, Ou Yang,  L. J.,, Young,  S.,, and Day,  D. A.. (1990);  Sugar and amino acid transport across symbiotic membranes from soybean nodules.  Molecular Plant-Microbe Interaction. 3 334-340
  • 34 Udvardi,  M. K.,, Price,  G. D.,, Gresshof,  P. M.,, and Day,  D. A.. (1988);  A dicarboxylate transporter on the peribacteroid membrane of soybean nodules.  FEBS Letters. 231 36-40
  • 35 van Slooten,  J. C.,, Bhuvanasvari,  T. V.,, Bardin,  S.,, and Stanley,  J.. (1992);  Two c4-dicarboxilate transport systems in Rhizobium sp. NGR234: rhizobial dicarboxilate transport is essential for nitrogen fixation in tropical legume symbiosis.  Molecular Plant-Microbe Interaction. 5 179-186
  • 36 Vance,  C.. (1998) Legume symbiotic nitrogen fixation: Agronomic aspects. The Rhizobiaceae. Spaink, H. P., Kondorosi, A., and Hooykaas, P. J. J., eds. Dordrecht; Kluwer Academic Publishers pp. 482-525
  • 37 Wignarajah,  K.. (1990);  Growth response of Phaseolus vulgaris to varying salinity regimes.  Environmental Experimental Botany. 30 141-147
  • 38 Zahran,  H. H., and Sprent,  J. I.. (1986);  Effects of sodium chloride and polyethylene glycol on root-hair and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. .  Planta. 167 303-309
  • 39 Zhu,  Y.,, Shearer,  G.,, and Kohl,  D. H.. (1992);  Proline fed to intact soybean plants influences acetylene reducing activity and content and metabolism of bacteroids.  Plant Physiology. 98 1020-1028

A. Ocaña

Departamento de Biología Vegetal Facultad de Ciencias Universidad de Granada

18071 Granada Spain

eMail: aocana@goliat.ugr.es

Section Editor: W. B. Frommer