RSS-Feed abonnieren
DOI: 10.1055/s-2002-25337
Diastereoselective Synthesis of Polyfunctional-Pyrrolidines via Vinyl Epoxide Aminolysis/Ring-Closing Metathesis: Synthesis of Chiral 2,5-Dihydropyrroles and (1R,2S,7R,7aR)-1,2,7-Trihydroxypyrrolizidine
Publikationsverlauf
Publikationsdatum:
07. Februar 2007 (online)
Abstract
This paper describes an efficient and diastereoselective method for preparing 2-substituted-2,5-dihydropyrroles in racemic and optically active form via acid catalysed or microwave assisted aminolysis of vinyl epoxides with allyl amine followed by ring-closing metathesis. Using this method, (1R,2S,7R,7aR)-1,2,7-trihydroxypyrrolizidine could be prepared by elaboration of a chiral 2-substitited-2,5-dihydropyrrole.
Key words
2,5-dihydropyrroles - vinyl epoxide - aminolysis - ring-closing metathesis
- 1
Denmark SE.Hurd AR. J. Org. Chem. 2000, 65: 2875 ; and references cited therein - 2
Denmark SE.Herbert B. J. Org. Chem. 2000, 65: 2887 ; and references cited therein - 3
White JD.Hrnciar P.Yokochi AFT. J. Am. Chem. Soc. 1998, 120: 7359 ; and references cited therein - 4
Asano N.Kuroi H.Ikeda K.Kizu H.Kameda Y.Kato A.Adachi I.Watson AA.Nash RJ.Fleet GWJ. Tetrahedron: Asymmetry 2000, 11: 1 - 5
Goetz M.Edwards OE. In The Alkaloids Vol. IX:Manske RHF. Academic Press; New York: 1976. p.545-551 - 6
Hinman MM.Heathcock CH. J. Org. Chem. 2001, 66: 7751 ; and references cited therein -
7a
Lindstrom UM.Somfai P. Synthesis 1998, 109 -
7b
Lindstrom UM.Olofsson B.Somfai P. Tetrahedron Lett. 1999, 40: 9273 - 8
Grubbs RH.Chang S. Tetrahedron 1998, 54: 4413 - For the application of the ring-closing metathesis reaction to the synthesis of aza-sugars see:
-
9a
Huwe CM.Blechert S. Tetrahedron Lett. 1995, 36: 1621 -
9b
Overkleeft HS.Pandit UK. Tetrahedron Lett. 1996, 37: 547 -
9c
Huwe CM.Blechert S. Synthesis 1997, 61 -
9d
White JD.Hrnciar P.Yokochi AFT. J. Am. Chem. Soc. 1998, 120: 7359 -
9e
Lindstrom UM.Somfai P. Tetrahedron Lett. 1998, 39: 7173 -
9f
Ovaa H.Stragies R.van der Marcel GA.van Boom JH.Blechert S. Chem. Commun. 2000, 1501 -
9g
Subramanian T.Lin C.-C. Tetrahedron Lett. 2001, 42: 4079 -
9h
Klitze CF.Pilli RA. Tetrahedron Lett. 2001, 42: 5605 - For the application of the ring-closing metathesis reaction to the synthesis of 2,5-dihydropyrroles from dienes see:
-
10a
Huwe CM.Velder J.Blechert S. Angew. Chem. Int. Ed. Engl. 1996, 35: 2376 -
10b
Fursterner A.Picquet M.Bruneau C.Dixneuf PH. Chem Commun 1998, 1315 -
10c
Cerezo S.Cortes J.Moreno-Manas M.Pleixats R.Roglans A. Tetrahedron 1998, 54: 14869 -
10d
Furstner A.Ackermann L. Chem. Commun. 1999, 95 -
10e
Bujard M.Briot A.Gouverneur V.Mioskowski C. Tetrahedron Lett. 1999, 40: 8795 -
10f
Furstner A.Liebl M.Hill AF.Wilton-Ely JDET. Chem. Commun. 1999, 601 -
10g
Ackermann L.Furstner A.Weskamp T.Kohl FJ.Hermann WA. Tetrhedron Lett. 1999, 40: 4787 -
10h
Ahmed M.Barrett AGM.Braddock DC.Cramp SM.Procopiou PA. Tetrahedron Lett. 1999, 40: 8657 -
10i
Evans PA.Robinson JE. Org. Lett. 1999, 1: 1929 -
10j
Hunt JCA.Laurent P.Moody CJ. Chem. Commun. 2000, 1771 - These were prepared from the corresponding (E)- or (Z)-allylic alcohols via epoxidation (Sharpless AE or m-CPBA), oxidation (Swern or TPAP/NMO) and Wittig olefination using procedures from ref.7a and the following references:
-
11a
Hayashi N.Fujiwara K.Murai A. Tetrahedron 1997, 53: 12425 -
11b
Nicolaou KC.Prasad CVC.Somers PK.Hwang CK. J. Am. Chem. Soc. 1989, 111: 5330 -
11c
Nicolaou KC.Prasad CVC.Hwang CK.Duyyan ME.Veale CA. J. Am. Chem. Soc. 1989, 111: 5321 -
11d
Díez-Martin D.Kotecha NR.Ley SV.Mantegani S.Menéndez JC.Organ HM.White AD. Tetrahedron 1992, 48: 7899 - 14
Chini M.Crotti P.Giovani E.Macchina F.Pineschi M. Synlett 1992, 303 - 16
Mukai C.Sugimoto Y.-I.Miyazawa K.Yamaguchi S.Hanaoka M. J. Org. Chem. 1998, 63: 6281 - 17
Medeiros EFD.Herbert JM.Taylor RJK. J. Chem. Soc. Perkin Trans. 1 1991, 2725 -
18a
Mulzer J.Dehmlow H. J. Org. Chem. 1992, 57: 3194 -
18b
Casiraghi G.Ulgheri F.Spanu P.Rassu G.Pinna L.Gasparri FG.Belicchi FM.Pelosi G. J. Chem. Soc., Perkin Trans. 1 1993, 2991 - 19
Misunobu O. Synthesis 1981, 1 -
20a
Bernotas RC.Cube RV. Tetrahedron Lett. 1991, 32: 161 -
20b
Chen Y.Vogel P. J. Org. Chem. 1994, 59: 2487 - 21
de Vincente J.Arrayás RG.Carretero JC. Tetrahedron Lett. 1999, 40: 6083 - 23
Griffith WP.Ley SP. Aldrichimica Acta 1990, 23: 13
References
(3S,4R)-3-Allylamino-6-(4-methoxybenzyloxy)-1-hexen-4-ol (8b): (2R,3R)-3-[2-(4-Methoxybenzyloxy)ethyl]-2-ethenyloxirane (7b) (1.647 g, 6.98 mmol) was dissolved in allylamine (11.5 mL, 153.56 mmol), then pTsOH.H2O (355 mg, 1.87 mmol) was added. The mixture was heated at 110 °C under nitrogen in a sealed tube for 4 d. After cooling, all volatiles were removed in vacuo to give a red solid that was purified by column chromatography (gradient elution from 0-12.5% MeOH-CH2Cl2) to give the title compound (1.83 g, 90%) as a pale yellow solid. Mp 61.5-62.5 °C. 1H NMR (300 MHz, CDCl3) δ 7.24 (d, 2 H, J = 9.0 Hz), 6.86 (d, 2 H, J = 9.0 Hz), 5.94-5.81 (m,1 H), 5.71 (ddd,1 H, J = 8.4, 10.5, 17.4 Hz), 5.22 (dd,1 H, J = 1.8, 10.5 Hz), 5.19-5.18 (m,1 H), 5.13-5.12 (m,1 H), 5.08 (dd,1 H, J = 1.2, 9.9 Hz), 4.43 (s, 2 H), 3.85 (dt,1 H, J = 3.3, 6.6 Hz), 3.79 (s, 3 H), 3.69-3.56 (m, 2 H), 3.28 (apparent dd,1 H, J = 6.0, 13.8 Hz), 3.12 (apparent dd,1 H, J = 6.3, 14.4 Hz), 3.07 (dd,1 H, J = 3.3, 8.4 Hz), 1.80-1.61 (m, 2 H); 13C NMR (75 MHz, CDCl3) δ 159.00 (C), 136.40 (CH), 136.04 (CH), 130.05 (C), 129.18 (CH), 118.28 (CH2), 116.00 (CH2), 113.67 (CH), 72.84 (CH2), 71.38 (CH), 68.27 (CH2), 65.18 (CH), 55.25 (CH3), 49.55 (CH2), 32.76 (CH2); [α]D 25+2.0 (c 2.3 CHCl3); MS (CI +ve) m/z 292 (M-1+. 100%); HRMS (CI +ve) Calcd for C17H26NO3 (MH+) 292.191. Found: 292.194.
13N -Boc Protection: To a solution of 8b (1.17 g, 4.01 mmol) in dry THF (70 mL) were added triethylamine (0.98 mL, 7.00 mmol) and di-tert-butyldicarbonate (1.53 g, 7.00 mmol) under nitrogen. The mixture was stirred at r.t. for 24 h. All volatiles were then removed in vacuo to give a yellow oil which was purified by column chromatography (gradient elution from 20-40% EtOAc-petroleum ether) to give the N-Boc derivative of 8b (1.507 g, 96%) as a yellow oil. 1H NMR (300 MHz, CDCl3) δ 7.24 (d, 2 H, J = 8.4 Hz), 6.87 (d, 2 H, J = 8.4 Hz), 6.08 (ddd,1 H, J = 6.9, 9.9, 17.1 Hz), 5.85-5.72 (m,1 H), 5.30-5.21 (m, 2 H), 5.16-5.06 (m, 2 H), 4.44 (s, 2 H), 4.09 (m,1 H), 3.93-3.89 (m,1 H), 3.82 (m, 2 H), 3.80 (s, 3 H), 3.73-3.57 (m, 2 H), 1.76 (br s, 2 H); 13C NMR (75 MHz, CDCl3) δ CO not observed, 159.00 (C), 134.96 (CH), 129.98 (CH), 129.12 (CH), 118.38 (CH2), 116.27 (CH2), 113.65 (CH), 80.14 (C), 72.84 (CH2), 70.06 (CH), 68.32 (CH2), 65.11 (CH), 55.21 (CH3), 50.12 (CH2), 33.93 (CH2), 28.42 (CMe3); [α]D 25 -19.2 (c 2.4 CHCl3); MS (CI +ve) m/z 392 (M + 1+); HRMS (CI +ve) Calcd for C22H34NO5 (MH+) 392.244. Found: 392.244. RCM: Grubbs’ Catalyst (0.219 g, 0.266 mmol) was added to a solution of the above N-Boc derivative (1.039 g, 2.634 mmol) in dry DCM (500 mL) under nitrogen. The mixture was heated to reflux for 24 h. The solution was cooled and the solvent was removed in vacuo to give a brown oil which was purified by column chromatography (gradient elution with 20-55% EtOAc-petroleum ether) to give 9b as a clear oil (0.877 g, 91%). 1H NMR (300 MHz, CDCl3) δ 7.25 (d, 2 H, J = 8.4 Hz), 6.86 (d, 2 H, J = 8.4 Hz), 5.80 (apparent dd,1 H, J = 1.5, 6.3 Hz), 5.64 (apparent dd,1 H, J = 2.1, 6.3 Hz), 4.85 (d,1 H, J = 8.4 Hz), 4.83-4.80 (m,1 H), 4.44 (s, 2 H), 4.19 (dd,1 H, J = 2.1, 15.6 Hz), 4.04-3.97 (m,1 H), 3.87 (apparent t,1 H, J = 9.6 Hz), 3.8 (s, 3 H), 3.71-3.56 (m, 2 H), 1.69-1.53 (m, 2 H), 1.48 (s, 9 H); 13C NMR (75 MHz, CDCl3) δ 158.91(CO), 156.14 (C), 130.39 (C), 129.25 (CH), 127.12 (CH), 126.53 (CH), 113.62 (CH), 80.50 (C), 72.84 (CH2), 71.33 (CH), 71.51 (CH), 67.87 (CH2), 55.26 (CH3), 54.68 (CH2), 31.79 (CH2), 28.48 (CH3); [α]D 23 -80.3 (c 2.4 CHCl3); MS (CI +ve) m/z 364 (M + 1+); HRMS (CI +ve) Calcd for C20H30NO5 (MH+) 364.212. Found: 364.199.
15Reactions were performed on a Milestone, ETHOS SEL microwave labstation in sealed teflon vessels with strict control of the internal reaction temperature.
2217: 1H NMR (300 MHz, CDCl3) δ 5.40 (ddd,1 H, J = 2.1, 4.2, 4.5 Hz), 5.12 (m,1 H), 4.99 (dd,1 H, J = 4.5, 7.8 Hz), 3.50 (dd,1 H, J = 2.1, 7.8 Hz), 3.27 (dd,1 H, J = 2.1, 11.7 Hz), 3.21 (ddd,1 H, obscured), 2.87 (dd,1 H, J = 4.2, 11.7 Hz), 2.71 (ddd,1 H, J =6.0, 9.0, 11.1 Hz), 2.07 (s, 3 H), 2.05 (s, 3 H), 2.02 (s, 3 H), 1.95-1.86 (m, 2 H); 13C NMR (75 MHz, CDCl3) δ 170.34 (CO), 170.11 (CO), 170.07 (CO), 77.13 (CH), 74.09 (CH), 73.16 (CH), 71.58 (CH), 57.12 (CH2), 52.91 (CH2), 30.54 (CH2), 21.11 (CH3), 20.94 (CH3), 20.75 (CH3); [α]D 25 +5.0 (c 0.8 CHCl3); 16: 1H NMR (300 MHz, D2O) δ 4.23-4.15 (m, 2 H), 3.86 (dd,1 H, J = 4.2, 6.3 Hz), 3.10 (dd,1 H, J = 1.8, 6.3 Hz), 3.04-2.98 (m, 2 H), 2.71 (dd,1 H, J = 4.2, 11.7 Hz), 2.61 (apparent quint,1 H), 2.08-1.95 (m,1 H), 1.77-1.67 (m,1 H); 13C NMR (75 MHz, D2O) δ 77.78 (CH), 77.64 (CH), 77.41 (CH), 74.81 (CH), 60.51 (CH2), 54.85 (CH2), 35.13 (CH2).