References
1
Denmark SE.
Hurd AR.
J. Org. Chem.
2000,
65:
2875 ; and references cited therein
2
Denmark SE.
Herbert B.
J. Org. Chem.
2000,
65:
2887 ; and references cited therein
3
White JD.
Hrnciar P.
Yokochi AFT.
J. Am. Chem. Soc.
1998,
120:
7359 ; and references cited therein
4
Asano N.
Kuroi H.
Ikeda K.
Kizu H.
Kameda Y.
Kato A.
Adachi I.
Watson AA.
Nash RJ.
Fleet GWJ.
Tetrahedron: Asymmetry
2000,
11:
1
5
Goetz M.
Edwards OE. In The Alkaloids
Vol. IX:
Manske RHF.
Academic Press;
New York:
1976.
p.545-551
6
Hinman MM.
Heathcock CH.
J. Org. Chem.
2001,
66:
7751 ; and references cited therein
7a
Lindstrom UM.
Somfai P.
Synthesis
1998,
109
7b
Lindstrom UM.
Olofsson B.
Somfai P.
Tetrahedron Lett.
1999,
40:
9273
8
Grubbs RH.
Chang S.
Tetrahedron
1998,
54:
4413
For the application of the ring-closing metathesis reaction to the synthesis of aza-sugars see:
9a
Huwe CM.
Blechert S.
Tetrahedron Lett.
1995,
36:
1621
9b
Overkleeft HS.
Pandit UK.
Tetrahedron Lett.
1996,
37:
547
9c
Huwe CM.
Blechert S.
Synthesis
1997,
61
9d
White JD.
Hrnciar P.
Yokochi AFT.
J. Am. Chem. Soc.
1998,
120:
7359
9e
Lindstrom UM.
Somfai P.
Tetrahedron Lett.
1998,
39:
7173
9f
Ovaa H.
Stragies R.
van der Marcel GA.
van Boom JH.
Blechert S.
Chem. Commun.
2000,
1501
9g
Subramanian T.
Lin C.-C.
Tetrahedron Lett.
2001,
42:
4079
9h
Klitze CF.
Pilli RA.
Tetrahedron Lett.
2001,
42:
5605
For the application of the ring-closing metathesis reaction to the synthesis of 2,5-dihydropyrroles from dienes see:
10a
Huwe CM.
Velder J.
Blechert S.
Angew. Chem. Int. Ed. Engl.
1996,
35:
2376
10b
Fursterner A.
Picquet M.
Bruneau C.
Dixneuf PH.
Chem Commun
1998,
1315
10c
Cerezo S.
Cortes J.
Moreno-Manas M.
Pleixats R.
Roglans A.
Tetrahedron
1998,
54:
14869
10d
Furstner A.
Ackermann L.
Chem. Commun.
1999,
95
10e
Bujard M.
Briot A.
Gouverneur V.
Mioskowski C.
Tetrahedron Lett.
1999,
40:
8795
10f
Furstner A.
Liebl M.
Hill AF.
Wilton-Ely JDET.
Chem. Commun.
1999,
601
10g
Ackermann L.
Furstner A.
Weskamp T.
Kohl FJ.
Hermann WA.
Tetrhedron Lett.
1999,
40:
4787
10h
Ahmed M.
Barrett AGM.
Braddock DC.
Cramp SM.
Procopiou PA.
Tetrahedron Lett.
1999,
40:
8657
10i
Evans PA.
Robinson JE.
Org. Lett.
1999,
1:
1929
10j
Hunt JCA.
Laurent P.
Moody CJ.
Chem. Commun.
2000,
1771
These were prepared from the corresponding (E)- or (Z)-allylic alcohols via epoxidation (Sharpless AE or m-CPBA), oxidation (Swern or TPAP/NMO) and Wittig olefination using procedures from ref.7a and the following references:
11a
Hayashi N.
Fujiwara K.
Murai A.
Tetrahedron
1997,
53:
12425
11b
Nicolaou KC.
Prasad CVC.
Somers PK.
Hwang CK.
J. Am. Chem. Soc.
1989,
111:
5330
11c
Nicolaou KC.
Prasad CVC.
Hwang CK.
Duyyan ME.
Veale CA.
J. Am. Chem. Soc.
1989,
111:
5321
11d
Díez-Martin D.
Kotecha NR.
Ley SV.
Mantegani S.
Menéndez JC.
Organ HM.
White AD.
Tetrahedron
1992,
48:
7899
12
(3S,4R)-3-Allylamino-6-(4-methoxybenzyloxy)-1-hexen-4-ol (8b): (2R,3R)-3-[2-(4-Methoxybenzyloxy)ethyl]-2-ethenyloxirane (7b) (1.647 g, 6.98 mmol) was dissolved in allylamine (11.5 mL, 153.56 mmol), then pTsOH.H2O (355 mg, 1.87 mmol) was added. The mixture was heated at 110 °C under nitrogen in a sealed tube for 4 d. After cooling, all volatiles were removed in vacuo to give a red solid that was purified by column chromatography (gradient elution from 0-12.5% MeOH-CH2Cl2) to give the title compound (1.83 g, 90%) as a pale yellow solid. Mp 61.5-62.5 °C. 1H NMR (300 MHz, CDCl3) δ 7.24 (d, 2 H, J = 9.0 Hz), 6.86 (d, 2 H, J = 9.0 Hz), 5.94-5.81 (m,1 H), 5.71 (ddd,1 H, J = 8.4, 10.5, 17.4 Hz), 5.22 (dd,1 H, J = 1.8, 10.5 Hz), 5.19-5.18 (m,1 H), 5.13-5.12 (m,1 H), 5.08 (dd,1 H, J = 1.2, 9.9 Hz), 4.43 (s, 2 H), 3.85 (dt,1 H, J = 3.3, 6.6 Hz), 3.79 (s, 3 H), 3.69-3.56 (m, 2 H), 3.28 (apparent dd,1 H, J = 6.0, 13.8 Hz), 3.12 (apparent dd,1 H, J = 6.3, 14.4 Hz), 3.07 (dd,1 H, J = 3.3, 8.4 Hz), 1.80-1.61 (m, 2 H); 13C NMR (75 MHz, CDCl3) δ 159.00 (C), 136.40 (CH), 136.04 (CH), 130.05 (C), 129.18 (CH), 118.28 (CH2), 116.00 (CH2), 113.67 (CH), 72.84 (CH2), 71.38 (CH), 68.27 (CH2), 65.18 (CH), 55.25 (CH3), 49.55 (CH2), 32.76 (CH2); [α]D
25+2.0 (c 2.3 CHCl3); MS (CI +ve) m/z 292 (M-1+. 100%); HRMS (CI +ve) Calcd for C17H26NO3 (MH+) 292.191. Found: 292.194.
13
N
-Boc Protection: To a solution of 8b (1.17 g, 4.01 mmol) in dry THF (70 mL) were added triethylamine (0.98 mL, 7.00 mmol) and di-tert-butyldicarbonate (1.53 g, 7.00 mmol) under nitrogen. The mixture was stirred at r.t. for 24 h. All volatiles were then removed in vacuo to give a yellow oil which was purified by column chromatography (gradient elution from 20-40% EtOAc-petroleum ether) to give the N-Boc derivative of 8b (1.507 g, 96%) as a yellow oil. 1H NMR (300 MHz, CDCl3) δ 7.24 (d, 2 H, J = 8.4 Hz), 6.87 (d, 2 H, J = 8.4 Hz), 6.08 (ddd,1 H, J = 6.9, 9.9, 17.1 Hz), 5.85-5.72 (m,1 H), 5.30-5.21 (m, 2 H), 5.16-5.06 (m, 2 H), 4.44 (s, 2 H), 4.09 (m,1 H), 3.93-3.89 (m,1 H), 3.82 (m, 2 H), 3.80 (s, 3 H), 3.73-3.57 (m, 2 H), 1.76 (br s, 2 H); 13C NMR (75 MHz, CDCl3) δ CO not observed, 159.00 (C), 134.96 (CH), 129.98 (CH), 129.12 (CH), 118.38 (CH2), 116.27 (CH2), 113.65 (CH), 80.14 (C), 72.84 (CH2), 70.06 (CH), 68.32 (CH2), 65.11 (CH), 55.21 (CH3), 50.12 (CH2), 33.93 (CH2), 28.42 (CMe3); [α]D
25 -19.2 (c 2.4 CHCl3); MS (CI +ve) m/z 392 (M + 1+); HRMS (CI +ve) Calcd for C22H34NO5 (MH+) 392.244. Found: 392.244. RCM: Grubbs’ Catalyst (0.219 g, 0.266 mmol) was added to a solution of the above N-Boc derivative (1.039 g, 2.634 mmol) in dry DCM (500 mL) under nitrogen. The mixture was heated to reflux for 24 h. The solution was cooled and the solvent was removed in vacuo to give a brown oil which was purified by column chromatography (gradient elution with 20-55% EtOAc-petroleum ether) to give 9b as a clear oil (0.877 g, 91%). 1H NMR (300 MHz, CDCl3) δ 7.25 (d, 2 H, J = 8.4 Hz), 6.86 (d, 2 H, J = 8.4 Hz), 5.80 (apparent dd,1 H, J = 1.5, 6.3 Hz), 5.64 (apparent dd,1 H, J = 2.1, 6.3 Hz), 4.85 (d,1 H, J = 8.4 Hz), 4.83-4.80 (m,1 H), 4.44 (s, 2 H), 4.19 (dd,1 H, J = 2.1, 15.6 Hz), 4.04-3.97 (m,1 H), 3.87 (apparent t,1 H, J = 9.6 Hz), 3.8 (s, 3 H), 3.71-3.56 (m, 2 H), 1.69-1.53 (m, 2 H), 1.48 (s, 9 H); 13C NMR (75 MHz, CDCl3) δ 158.91(CO), 156.14 (C), 130.39 (C), 129.25 (CH), 127.12 (CH), 126.53 (CH), 113.62 (CH), 80.50 (C), 72.84 (CH2), 71.33 (CH), 71.51 (CH), 67.87 (CH2), 55.26 (CH3), 54.68 (CH2), 31.79 (CH2), 28.48 (CH3); [α]D
23 -80.3 (c 2.4 CHCl3); MS (CI +ve) m/z 364 (M + 1+); HRMS (CI +ve) Calcd for C20H30NO5 (MH+) 364.212. Found: 364.199.
14
Chini M.
Crotti P.
Giovani E.
Macchina F.
Pineschi M.
Synlett
1992,
303
15 Reactions were performed on a Milestone, ETHOS SEL microwave labstation in sealed teflon vessels with strict control of the internal reaction temperature.
16
Mukai C.
Sugimoto Y.-I.
Miyazawa K.
Yamaguchi S.
Hanaoka M.
J. Org. Chem.
1998,
63:
6281
17
Medeiros EFD.
Herbert JM.
Taylor RJK.
J. Chem. Soc. Perkin Trans. 1
1991,
2725
18a
Mulzer J.
Dehmlow H.
J. Org. Chem.
1992,
57:
3194
18b
Casiraghi G.
Ulgheri F.
Spanu P.
Rassu G.
Pinna L.
Gasparri FG.
Belicchi FM.
Pelosi G.
J. Chem. Soc., Perkin Trans. 1
1993,
2991
19
Misunobu O.
Synthesis
1981,
1
20a
Bernotas RC.
Cube RV.
Tetrahedron Lett.
1991,
32:
161
20b
Chen Y.
Vogel P.
J. Org. Chem.
1994,
59:
2487
21
de Vincente J.
Arrayás RG.
Carretero JC.
Tetrahedron Lett.
1999,
40:
6083
22
17: 1H NMR (300 MHz, CDCl3) δ 5.40 (ddd,1 H, J = 2.1, 4.2, 4.5 Hz), 5.12 (m,1 H), 4.99 (dd,1 H, J = 4.5, 7.8 Hz), 3.50 (dd,1 H, J = 2.1, 7.8 Hz), 3.27 (dd,1 H, J = 2.1, 11.7 Hz), 3.21 (ddd,1 H, obscured), 2.87 (dd,1 H, J = 4.2, 11.7 Hz), 2.71 (ddd,1 H, J =6.0, 9.0, 11.1 Hz), 2.07 (s, 3 H), 2.05 (s, 3 H), 2.02 (s, 3 H), 1.95-1.86 (m, 2 H); 13C NMR (75 MHz, CDCl3) δ 170.34 (CO), 170.11 (CO), 170.07 (CO), 77.13 (CH), 74.09 (CH), 73.16 (CH), 71.58 (CH), 57.12 (CH2), 52.91 (CH2), 30.54 (CH2), 21.11 (CH3), 20.94 (CH3), 20.75 (CH3); [α]D
25 +5.0 (c 0.8 CHCl3); 16: 1H NMR (300 MHz, D2O) δ 4.23-4.15 (m, 2 H), 3.86 (dd,1 H, J = 4.2, 6.3 Hz), 3.10 (dd,1 H, J = 1.8, 6.3 Hz), 3.04-2.98 (m, 2 H), 2.71 (dd,1 H, J = 4.2, 11.7 Hz), 2.61 (apparent quint,1 H), 2.08-1.95 (m,1 H), 1.77-1.67 (m,1 H); 13C NMR (75 MHz, D2O) δ 77.78 (CH), 77.64 (CH), 77.41 (CH), 74.81 (CH), 60.51 (CH2), 54.85 (CH2), 35.13 (CH2).
23
Griffith WP.
Ley SP.
Aldrichimica Acta
1990,
23:
13