References
1 For a leading review on radical clocks, see: Newcomb M.
Tetrahedron
1993,
49:
1151
2
Nonhebel DC.
Chem. Soc. Rev.
1993,
347
3 For a recent contribution, see: Lis L.
Koltun ES.
Liu H.-W.
Kass SR.
J. Am. Chem. Soc.
2002,
124:
1276
4
Kretzschmar I.
Levinson JA.
Friend CM.
J. Am. Chem. Soc.
2000,
122:
12395
5
Crandall JK.
Tindell GL.
Manmade A.
Tetrahedron Lett.
1982,
23:
3769
6
Back TG.
Muralidharan KR.
J. Org. Chem.
1989,
54:
121
7
Fensterbank L.
Malacria M.
Sieburth SM.
Synthesis
1997,
813
8
Corey EJ.
Fuchs PL.
Tetrahedron Lett.
1972,
3769
9
Corley EG.
Thompson AS.
Huntington M.
Org. Synth.
2000,
77:
231
10
Journet M.
Malacria M.
J. Org. Chem.
1992,
57:
3085
11
Militzer H.-C.
Schömenauer S.
Otte C.
Puls C.
Hain J.
Bräse S.
de Meijere A.
Synthesis
1993,
998
12
Journet M.
Cai D.
DiMichele LM.
Larsen RD.
Tetrahedron Lett.
1998,
39:
6427
13 Spectroscopic data for 10. IR(neat): 2960, 1960, 1750, 1450, 1370, 1270 cm-1; 1H NMR (200 MHz, CDCl3) δ 5.21 (m, 1 H, vinyl), 4.48 (t, J = 2.0 Hz, 2 H, CH
2
O), 3.75 (s, 3 H, CO2CH
3
), 1.97 (quint, J = 7.4 Hz, 2 H, CH
2
CH3), 1.32 (mAB, 2 H, CH
2
Si), 0.97 (t, J = 7.4 Hz, 3 H, CH
3
), 0.02 (s, 9 H, Si(CH
3
)3); 13C NMR (50 MHz, CDCl3) δ 201.8 (C, C=C=CH), 155.8 (C, C=O), 97.4 (C, C=C=CH), 94.8 (CH, C=C=CH), 70.1 (CH2, CH2O), 54.8 (CH3, CO2
CH3), 22.5 (CH2, CH2CH3), 18.2 (CH2, CH2Si), 13.6 (CH3), -1.3 (3 CH3, Si(CH3)3). Anal. Calcd. for C12H22O3Si: C, 59.46; H, 9.15. Found: C, 59.34; H, 9.35.
For a radical synthesis of allenes based on the β-elimination of vinylsulfoxides, see:
14a
Delouvrié B.
Lacôte E.
Fensterbank L.
Malacria M.
Tetrahedron Lett.
1999,
40:
3565
14b Mouriès, V.; Delouvrié, B.; Lacôte, E.; Fensterbank, L.; Malacria, M. Eur. J. Org. Chem. 2002, in press.
For instance, see:
15a
Lee PH.
Bang K.
Lee K.
Lee C.-H.
Chang S.
Tetrahedron Lett.
2000,
41:
7521
15b
Spino C.
Fréchette S.
Tetrahedron Lett.
2000,
41:
8033
15c
Stichler-Bonaparte J.
Kruth H.
Lunkwitz R.
Tschierske C.
Liebigs Ann.
1996,
1375
16a The cis relative stereochemistry was assigned by analogy with our previous work, see ref.10 and: Devin P.
Fensterbank L.
Malacria M.
J. Org. Chem.
1998,
63:
6764
16b Spectral data for 13. IR(neat): 3350, 3080, 2950, 1640, 1250 cm-1; 1H NMR (400 MHz, CDCl3) δ 4.40 (m, 1 H, CH-OH), 2.31 (m, 2 H, CH
2 cyclopentenol + CHCH3), 1.76 (d, J = 13.8 Hz, 1 H, CH
2Si), 1.64 (d, J = 13.8 Hz, 1 H, CH
2Si), 1.34 (m, 1 H, CH cyclopropane), 1.26 (m, 1 H, CH
2 cyclopentenol), 1.11 (d, J = 6.6 Hz, 3 H, CH
3
), 0.70 (m, 2 H, cyclopropane), 0.55 (m, 1 H, cyclopropane), 0.41 (m, 1 H, cyclopropane), 0.04 [9 H, Si(CH
3)3]; 13C NMR (100 MHz, CDCl3) δ 141.2 (C, C=C), 137.1 (C, C=C), 79.9 (CH, CH-OH), 41.9 (CH2, cyclopentenol), 38.6 (CH, cyclopentenol), 23.0 (CH3), 16.4 (CH2, CH2Si), 9.7 (CH, cyclopropane), 5.8 (CH2, cyclopropane), 5.2 (CH2, cyclopropane), -0.4 [3 CH3, Si(CH3)3]. Anal. Calcd. for C13H24OSi: C, 69.58; H, 10.78. Found: C, 69.55; H, 10.89.
17a We thank one of the referees for bringing to our attention that the rate constant of a 5-exo vinyl radical cyclization has been estimated to be: 3.2 ¥ 108 s-1 at 60 °C: Beckwith ALJ.
O’Shea DM.
Tetrahedron Lett.
1986,
27:
4525
17b Compared to a value of 2.3 × 105 s-1 (20 °C) for the alkyl analog: Chatgilialoglu C.
Ingold KU.
Scaiano JC.
J. Am. Chem. Soc.
1981,
103:
7739
17c Although the Beckwith system cannot directly be compared to the system studied herein (different substitution pattern), this data could suggest an intrinsic faster cyclization of the vinyl radical, thus contributing significantly to the observed effect.
18 An alkoxy group reduces the activation barrier for the ring opening of cyclopropylcarbinyl radicals, see: Martinez FN.
Schlegel HB.
Newcomb M.
J. Org. Chem.
1998,
63:
3618
19
Bogen S.
Gulea M.
Fensterbank L.
Malacria M.
J. Org. Chem.
1999,
64:
4920