Subscribe to RSS
DOI: 10.1055/s-2002-32596
N-Azinylpyridinium N-Aminides: An Approach to Pyrazolopyridines via an Intramolecular Radical Pathway
Publication History
Publication Date:
07 February 2007 (online)
Abstract
Intramolecular radical arylation, under thermal conditions, to a π-deficient pyridinium, linked to a π-excessive 2-azinyliminopyridine moiety is described. The method allows a new entry to pyrazolo[1,5-a]pyridine nucleus.
Key words
aminides - pyrazolopyridines - intramolecular radical reactions - ylides
-
1a
Curran DP.Fevig TP.Jasperse CP. Chem. Rev. 1991, 91: 1237 -
1b
Giese B.Kopping B.Göbel T.Dickhaut J.Thoma G.Kulicke KJ.Trach F. Org. React. 1996, 48: 301 -
2a
Dobbs AP.Jones K.Veal KT. Tetrahedron Lett. 1995, 36: 4857 ; and references therein -
2b
Dobbs AP.Jones K.Veal KT. Tetrahedron 1998, 54: 2149 ; and references therein -
2c
Fiumana A.Jones K. Tetrahedron Lett. 2000, 41: 4209 -
3a
Shankaran K.Sloan CP.Snieckus V. Tetrahedron Lett. 1985, 26: 6001 -
3b
Snieckus V. Bull. Soc. Chim. Fr. 1988, 67 - 4
Nadin A.Harrison T. Tetrahedron Lett. 1999, 40: 4073 -
5a
Harrowven DC.Browne R. Tetrahedron Lett. 1994, 35: 5301 -
5b
Harrowven DC.Nunn MIT. Tetrahedron Lett. 1998, 39: 5875 -
5c
Harrowven DC.Nunn MIT.Blumire NJ.Fenwick DR. Tetrahedron Lett. 2000, 41: 6681 -
5d
Harrowven DC.Sutton BJ.Coulton S. Tetrahedron Lett. 2001, 42: 9061 -
5e
Harrowven DC.Nunn MIT.Blumire NJ.Fenwick DR. Tetrahedron 2001, 57: 4447 -
6a
Jones K.Fiumana A. Tetrahedron Lett. 1996, 37: 8049 -
6b
Jones K.Fiumana A.Escudero-Hernandez ML. Tetrahedron 2000, 56: 397 - 7
Dobbs AP.Jones K.Veal KT. Tetrahedron Lett. 1997, 38: 5383 -
8a
Minisci F.Vismara E.Fontana F. Heterocycles 1989, 28: 489 -
8b
Fontana F.Minisci F.Barbosa MCN.Vismara E. J. Org. Chem. 1991, 56: 2866 -
8c
Minisci F.Vismara E.Fontana F. J. Heterocycl. Chem. 1990, 27: 79 - 9
Minisci F.Fontana F.Pianese G.Yan YM. J. Org. Chem. 1993, 58: 4207 -
10a
Togo H.Hayashi K.Yokoyama M. Chem. Lett. 1991, 2063 -
10b
Togo H.Hayashi K.Yokoyama M. Chem. Lett. 1993, 641 -
11a
Murphy JA.Sherburn MS. Tetrahedron Lett. 1990, 31: 1625 -
11b
Murphy JA.Sherburn MS. Tetrahedron Lett. 1990, 31: 3495 -
12a
Da Mata MLEN.Motherwell WB.Ujjainwalla F. Tetrahedron Lett. 1997, 38: 137 -
12b
Da Mata MLEN.Motherwell WB.Ujjainwalla F. Tetrahedron Lett. 1997, 38: 141 -
12c
Clive DL.Kang S. Tetrahedron Lett. 2000, 41: 1315 -
12d
Bonfand E.Forslund L.Motherwell WB.Vazquez S. Synlett 2000, 475 -
12e
Studer A.Bossart M.Steen H. Tetrahedron Lett. 1998, 39: 8829 -
13a
Carceller R.García-Navío JL.Izquierdo ML.Alvarez-Builla J.Fajardo M.Gomez-Sal P.Gago F. Tetrahedron 1994, 50: 4995 -
13b
Burgos C.Delgado F.García-Navío JL.Izquierdo ML.Alvarez-Builla J. Tetrahedron 1995, 51: 8649 -
13c
García de Viedma A.Martínez-Barrasa V.Burgos C.Izquierdo ML.Alvarez-Builla J. J. Org. Chem. 1999, 64: 1007 -
13d
Martínez-Barrasa V.Delgado F.Burgos C.García-Navío JL.Izquierdo ML.Alvarez-Builla J. Tetrahedron 2000, 56: 2481 -
14a
Kakehi A.Ito S.Ono T.Miyazima T. Chem. Lett. 1979, 205 -
14b
Kakehi A.Ito S.Ono T.Miyazima T. J. Chem. Res., Synop. 1980, 18 -
14c
Kakehi A.Kitajima J.Ito S.Tagusagawa N. Acta Cryst. 1995, 942 -
14d
Phadke RC.Rangnekar DW. Synthesis 1987, 484 -
14e
Bast K.Behrens M.Durst T.Grashey R.Huisgen R.Schiffer R.Temme R. Eur. J. Org. Chem. 1998, 379 -
15a Loss of a proton from a dihydropyridine radical cation is a key step in the oxidative homolytic alkylation of pyridinium salts, in aqueous or Me2SO solutions:
Minisci F.Fontana F.Morini G.Serravalle M.Giordano C. J. Org. Chem. 1987, 52: 730 -
15b Rusell and co-workers have reported previously the use of bases to promote the substitutive reactions of aromatics:
Rusell GA.Chen P.Kim BH.Rajaratnam R. J. Am. Chem. Soc. 1997, 119: 8795 -
15c
Wang C.Rusell GA.Trahanovsky WS. J. Org. Chem. 1998, 63: 9956 - 18
Martínez-Barrasa V.García de Viedma A.Burgos C.Alvarez-Builla J. Org. Lett. 2000, 2: 3933
References
Typical Procedure, Method A: 3-Chloro-dipyrido[1,2- b; 3′2′- d ]pyrazole 5a: A solution of tris(trimethylsilyl)silane (TTMSS) (0.149 g 0.6 mmol) and AIBN (0.099 g, 0.6 mmol) in 6 mL of dry benzene was diluted with 14 mL of dry acetonitrile. The resulting solution was added dropwise by a syringe pump during 16 h, to a dispersion of potassium carbonate (0.083 g, 0.6 mmol) and the aminide 1c (0.062 g, 0.3 mmol) in 50 mL of dry acetonitrile, stirred at 80ºC (bath temperature), under an atmosphere of dry argon. After being stirred at the same temperature until 24 h, full consumption of 1c was observed (TLC analysis). The reaction mixture was allowed to warm to r.t. and distilled water (5 mL) was added. The organic extracts were dried (Na2SO4) and concentrated in vacuo, providing a crude product that was purified by flash chromatography [silicagel, ethyl acetate:hexane (1:1) (Rf ≈ 0.30)]. Yellow solid (0.034 g, 56% yield, toluene, mp = 212-214 ºC). 1H NMR (300 MHz, CDCl3): δ = 8.87 (ddd, 1 H, J = 6.9, 1.2 and 1.1 Hz), 8.80 (d, 1 H, J = 2.4 Hz), 8.39 (d, 1 H, J = 2.4 Hz), 8.11 (ddd, 1 H, J = 8.5, 1.4 and 1.1 Hz), 7.51 (ddd, 1 H, J = 8.5, 7.3 and 1.2 Hz), 7.33 (ddd, 1 H, J = 7.3, 6.9 and 1.4 Hz). 13C NMR (75 MHz, CDCl3): δ = 157.7, 152.2, 146.5, 134.4, 129.0, 127.7, 124.0, 122.8, 118.5, 117.8. IR (KBr): 2922, 1706, 1641, 1437 cm-1. MS (CI): m/z = 204, 206 ([M+ + 1], 100, 32). EIMS HR: calcd for C10H6 35ClN3: [M+] 203.0246. Found: 203.0240.
17Potassium carbonate could abstract a proton from the substituted dihydropyridine radical 6 (Scheme [2] ), to form the radical 7, that would be converted in the arylated compound 5 (see ref. [15b] [c] ). In the absence of potassium carbonate, dihydropyridine radical 6 did not evolve to 5, and only decomposition products and N-N reduction compounds were observed.
19Typical Procedure, Method E: Pyridinium N -(3′-bromo-5′-chloropyrazin-2′-yl)aminide 1e: To a solution of pyridinium (N-(2′-pyrazinyl)aminide 1b (0.172 g, 1 mmol) in dry dichloromethane (5 mL) stirred at 0 ºC was added dropwise a solution of N-chlorosuccinimide (NCS) (0.160 g, 1.2 mmol) in dry dichloromethane (10 mL). The reaction mixture was stirred for 1 h at the same temperature, allowed to warm up to r.t. and stirring for a further 24 h. The solvent was evaporated and the residue was purified by flash chromatography [silicagel, ethanol, (Rf ≈ 0.25)] to yield 0.149 g (72%) of pyridinium N-(5′-chloropyrazin-2′-yl)aminide 8b: Yellow solid (ethyl acetate, mp = 158-161 ºC). 1H NMR (300 MHz, CD3OD): δ = 8.76 (dd, 2 H, J = 5.7 and 1.3 Hz), 8.13 (tt, 1 H, J = 8.2 and 1.3 Hz), 7.86 (dd, 2 H, J = 8.2 and 5.7 Hz), 7.62 (d, 1 H, J = 1.4 Hz), 7.60 (d, 1 H, J = 1.4 Hz). 13C NMR (75 MHz, CD3 OD): δ = 160.8, 145.0, 140.3, 139.5, 135.4, 132.1, 128.7. Anal. Calcd for C9H7ClN4: C, 52.31; H, 3.41; N, 27.11. Found: C, 52.32; H, 3.69; N, 27.31. To a solution of pyridinium N-(5′-chloro-pyrazin-2′-yl)aminide 8b (0.206 g, 1 mmol) in dry dichloro-methane (5 mL) stirred at r.t., was added dropwise a solution of N-bromosuccinimide (NBS) (0.214 g, 1.2 mmol) in dry dichlorometane (10 mL). The reaction mixture was stirred until 24 h at the same temperature, the solvent was eva-porated and the residue was purified by flash chromato-graphy [silicagel, ethanol (Rf ≈ 0.75)] to yield 0.231 g (81%) of pyridinium N-(3′-bromo-5′-chloropyrazin-2′-yl)aminide 1e: Yellow-orange solid (ethyl acetate, mp = 203-205 ºC). 1H NMR (300 MHz, CD3OD): δ = 8.70 (dd, 2 H, J = 6.9 and 1.4 Hz), 8.25 (tt, 1 H, J = 7.8 and 1.4 Hz), 7.93 (dd, 2 H, J = 7.8 and 6.9 Hz), 7.60 (s, 1 H). 13C NMR (75 MHz, CD3OD): δ = 158.4, 146.2, 141.4, 139.6, 130.8, 129.0, 126.0; Anal. Calcd for C9H6BrClN4: C, 37.86; H, 2.12; N, 19.62. Found: C, 38.01; H, 2.43; N, 19.31.