Subscribe to RSS
DOI: 10.1055/s-2002-35564
Indium-Mediated Stereoselective Synthesis of Truncated, 6- and 7-Carbon Sialic Acids
Publication History
Publication Date:
20 November 2002 (online)
Abstract
Several 6- and 7-carbon sialic acid derivatives were synthesized, without tedious protecting group manipulations, in high overall yields. A key step of the synthesis was the chain extension of suitable α-amino aldehyde derivatives by an indium-mediated addition of ethyl 2-(bromomethyl)acrylate. Under acidic reaction conditions, the corresponding extended enoates were obtained with high trans-stereoselectivity. Ozonolysis furnished the desired 4-acylamino-substituted hexulosonic and heptulosonic acids in free form for biochemical studies.
Key words
allylations - Barbier-type reactions - indium - α-amino aldehydes - sialic acids
-
1a
Angata T.Varki A. Chem. Rev. 2002, 102: 439 -
1b
Roy R.Laferrière CA.Pon RA. Methods Enzymol. 1994, 247: 351 -
1c
Corfield AP.Schauer R. In Sialic Acids, Chemistry, Metabolism and FunctionSchauer R. Springer Verlag; New York: 1982. p.5 -
1d
Vliegenthart JFG.Mamerling JP. In Sialic Acids, Chemistry, Metabolism and FunctionSchauer R. Springer Verlag; New York: 1982. p.59 -
2a
Vimr E.Lichtensteiger C. Trends Microbiol. 2002, 10: 254 -
2b
Kiefel MJ.von Itzstein M. Chem. Rev. 2002, 102: 471 -
2c
Jaeken J.Matthijs G. Annu. Rev. Genomics Hum. Genet. 2001, 2: 129 -
2d
Schauer R. Glycoconjugate J. 2000, 17: 485 -
2e
Crocker PR.Varki A. Trends Immunol. 2001, 22: 337 -
2f
Sillanaukee P.Ponnio M.Jaaskelainen IP. Eur. J. Clin. Invest. 1999, 29: 413 -
2g
Rosenberg S. Biology of the Sialic Acids Plenum Press; New York: 1995. -
3a For
a review, see:
Fessner W.-D.Walter C. Top. Curr. Chem. 1996, 184: 97 -
3b
Augé C.David S.Gautheron C.Veyrières A. Tetrahedron Lett. 1985, 26: 2439 -
3c
Simon ES.Bednarski MD.Whitesides GM. J. Am. Chem. Soc. 1988, 110: 7159 -
3d
Schrell A.Whitesides GM. Liebigs Ann. Chem. 1990, 1111 -
3e
Lin C.-H.Sugai T.Halcomb RL.Ichikawa Y.Wong CH. J. Am. Chem. Soc. 1992, 114: 10138 -
3f
Mahmoudian M.Noble D.Drake CS.Middleton RF.Montgomery DS.Piercey JE.Ramlakhan D.Todd M.Dawson MJ. Enzyme Microb. Technol. 1997, 20: 393 -
4a For
a review, see:
Li C.-J.Chan T.-H. Tetrahedron 1999, 55: 11149 -
4b
Li C.-J.Chan T.-H. J. Chem. Soc., Chem. Commun. 1992, 747 -
4c
Kim E.Gordon DM.Schmid W.Whitesides GM. J. Org. Chem. 1993, 58: 5500 -
4d
Gordon DM.Whitesides GM. J. Org. Chem. 1993, 58: 7937 -
4e
Li CJ.Lee MC.Wei ZY.Chan TH. Can. J. Chem. 1994, 72: 1181 -
4f
Chan T.-H.Lee M.-C. J. Org. Chem. 1995, 60: 4228 -
4g
Choi S.-K.Lee S.Whitesides GM. J. Org. Chem. 1996, 61: 8739 -
4h
Banwell MG.Savi CD.Watson K. Chem. Commun. 1998, 1189 -
5a
Suttajit M.Urban C.McLean RL. J. Biol. Chem. 1971, 246: 810 -
5b
Kim M.-J.Hennen WJ.Sweers HM.Wong C.-H. J. Am. Chem. Soc. 1988, 110: 6481 -
5c
Fitz W.Schwark JR.Wong C.-H. J. Org. Chem. 1995, 60: 3663 -
6a
Kuhn R.Gauhe A. Chem. Ber. 1965, 98: 395 -
6b
McLean RL.Suttajit M.Beidler J.Winzler RJ. J. Biol. Chem. 1971, 246: 803 -
6c
Peters BP.Aronson NN. Carbohydr. Res. 1976, 47: 345 -
6d
Reuter G.Schauer R.Szeiki C.Kamerling JP.Vliegenthart JFG. Glycoconjugate J. 1989, 6: 35 - Synthesis of derivatives of 10a:
-
7a from d-glucuronolactone:
Vlahov IR.Vlahova PI.Schmidt RR. Tetrahedron Lett. 1991, 32: 7025 -
7b From d-serine:
Chappell MD.Halcomb RL. Org. Lett. 2000, 2: 2003 -
7c From l-ascorbic
acid:
Banwell M.De Savi C.Hockless D.Watson K. Chem. Commun. 1998, 645 - 8
Knorst M.Fessner W.-D. Adv. Synth. Catal. 2001, 343: 698 -
9a
Jurczak J.Golebiowski A. Chem. Rev. 1989, 89: 149 -
9b
Reetz MT. Angew. Chem., Int. Ed. Engl. 1991, 30: 1531 -
9c
Steurer S.Podlech J. Eur. J. Org. Chem. 1999, 1551 - 10
Hung RR.Straub JA.Whitesides GM. J. Org. Chem. 1991, 56: 3849 - 11
Waldmann H.Sebastian D. Chem. Rev. 1994, 94: 911 - 13
Warwel M.Fessner W.-D. Synlett 2000, 6: 865 - 14 The origin of the pronounced selectivity
at low pH has not been thoroughly investigated yet but it may be
speculated that protonation of the electrophile will lead to a tighter transition
state for the addition. For an in-depth discussion, see:
Paquette LA.Mitzel TM. J. Am. Chem. Soc. 1996, 118: 1931 - 15
Lemieux GA.Bertozzi CR. Chem. Biol. 2001, 8: 265 - 16
Villieras J.Rambaud M. Org. Synth. 1988, 66: 220
References
Typical reaction conditions for the
indium-mediated allylation: To a solution of the aminoaldehyde (1.0
mmol) and ethyl 2-(bromomethyl)-acrylate
[16]
(386
mg; 2.0 mmol) in a mixture made from 12.5 mL EtOH and 2.5 mL 0.1
M HCl was added indium powder (230 mg; 2.0 mmol) at r.t. The suspension
was vigorously stirred until TLC indicated complete conversion of
the starting material, and was then filtered through a pad of Celite.
Water was added (20 mL), and the resulting mixture was concentrated
to 20 mL under vacuum followed by extraction with EtOAc (3 × 30
mL). The combined organic layers were washed with brine (1 × 20
mL) and water (1 × 20 mL), dried over
Na2SO4, filtered, and concentrated under vacuum.
Without further purification, the remaining crude colorless solid
was taken up in MeOH and treated with ozone at -78 °C.
Ozonide reduction (Me2S, r.t.) followed by flash chromatography provided
compounds 9a-d as
colorless syrups, which were hydrolyzed by treatment with 2 equivalents
of aq LiOH to furnish stereoisomerically pure truncated sialic acid derivatives 10a-d.
Spectroscopic
data: 10a: 1H NMR (300
MHz, D2O): δ = 3.82
(m, 1 H, 4-H), 3.67 (m, 2 H, 6-H), 3.53 (m, 1 H,
5-H),
2.15 (dd, 1 H, J
3eq,3ax = 13.1
Hz, J
3eq, 4 = 4.9
Hz, 3eq-H), 1.90 (s, 3 H, CH3), 1.69 (dd,
1 H, J
3ax,3eq = 13.1
Hz, J
3ax,4 = 11.2
Hz, 3ax-H); 13C NMR (75
MHz, D2O): δ = 177.23
(C-1), 175.07 (C=O), 97.75 (C-2), 68.27 (C-4), 63.67 (C-6),
54.36 (C-5), 41.33 (C-3), 24.40 (CH3); ESI-MS: m/z = 218
([M-H]-, 100). 10b: 1H
NMR (300 MHz, D2O): δ = 7.26-7.38
(m, 5 H, Har), 3.58 (s, 2 H, CH2), 3.48-3.96 (m,
4 H, 4-,5-,6-H), 2.14 (dd, 1 H, J
3eq,3ax = 13.0
Hz, J
3eq,4 = 4.8
Hz, 3eq-H), 1.88 (dd, 1 H, J
3ax,3eq = 13.0
Hz, J
3ax,4 = 11.1
Hz, 3ax-H); 13C NMR (75
MHz, D2O): δ = 178.27
(C=O), 177.98 (C-1), 138.07 (Ci), 131.64, 131.29,
129.63 (CH
o
,
m
,
p
),
99.24 (C-2), 69.26 (C-4), 64.19 (C-6), 55.42 (C-5), 45.28 (CH2),
42.50 (C-3); ESI-MS: m/z = 318 ([M + Na]+,
100), 300(40). 10c: 1H
NMR (300 MHz, D2O): δ = 3.65-3.93
(5 H, m, 4-,5-,6-,7-H), 2.32 (1 H, dd, J
3eq,3ax = 13.0
Hz, J
3eq,4 = 5.0
Hz, 3eq-H), 2.04 (3 H, s, CH3), 1.87 (1 H,
dd, J
3ax,3eq = 13.0
Hz, J
3ax,4 = 11.6
Hz, 3ax-H); 13C NMR (75
MHz, D2O): δ = 177.77
(C-1), 175.1 (C=O), 98.17 (C-2), 75.80 (C-6), 69.39 (C-4),
63.80 (C-7), 55.22 (C-5), 41.91 (C-3), 25.03 (CH3); ESI-MS:
m/z
= 248
([M - H]-, 100), 230(41). 10d: 1H NMR (300 MHz,
D2O): δ = 7.28-7.40
(5 H, m, Har), 3.63 (2 H, s, CH2), 3.50-3.91
(5 H, m, 4-,5-,6-,7-H), 2.33 (1 H, dd, J
3eq,3ax = 12.9
Hz, J
3eq,
4 = 4.9
Hz, 3eq-H), 1.84 (1 H, dd, J
3ax,3eq = 12.9
Hz, J
3ax,
4 = 11.8
Hz,
3ax-H); 13C
NMR (75 MHz, D2O): δ = 178.16
(C=O), 175.66 (C-1), 137.72 (Ci), 131.92, 131.78,
130.19 (C
o
,
m
,
p
),
97.81 (C-2), 75.70 (C-6), 68.94 (C-4), 63.86 (C-7), 55.16
(C-5),
45.10 (CH2), 41.79 (C-3); ESI-MS: m/z = 420 ([M + Na + 4
H2O]+, 100), 402 ([M + Na + 3
H2O]+, 95)