References
1a
Angata T.
Varki A.
Chem.
Rev.
2002,
102:
439
1b
Roy R.
Laferrière CA.
Pon RA.
Methods Enzymol.
1994,
247:
351
1c
Corfield AP.
Schauer R. In Sialic Acids, Chemistry, Metabolism and Function
Schauer R.
Springer Verlag;
New
York:
1982.
p.5
1d
Vliegenthart JFG.
Mamerling JP. In Sialic Acids, Chemistry, Metabolism and Function
Schauer R.
Springer Verlag;
New
York:
1982.
p.59
2a
Vimr E.
Lichtensteiger C.
Trends
Microbiol.
2002,
10:
254
2b
Kiefel MJ.
von Itzstein M.
Chem.
Rev.
2002,
102:
471
2c
Jaeken J.
Matthijs G.
Annu. Rev. Genomics Hum. Genet.
2001,
2:
129
2d
Schauer R.
Glycoconjugate J.
2000,
17:
485
2e
Crocker PR.
Varki A.
Trends Immunol.
2001,
22:
337
2f
Sillanaukee P.
Ponnio M.
Jaaskelainen IP.
Eur.
J. Clin. Invest.
1999,
29:
413
2g
Rosenberg S.
Biology of the Sialic Acids
Plenum
Press;
New York:
1995.
3a For
a review, see: Fessner W.-D.
Walter C.
Top. Curr. Chem.
1996,
184:
97
3b
Augé C.
David S.
Gautheron C.
Veyrières A.
Tetrahedron Lett.
1985,
26:
2439
3c
Simon ES.
Bednarski MD.
Whitesides GM.
J. Am. Chem. Soc.
1988,
110:
7159
3d
Schrell A.
Whitesides GM.
Liebigs Ann. Chem.
1990,
1111
3e
Lin C.-H.
Sugai T.
Halcomb RL.
Ichikawa Y.
Wong CH.
J.
Am. Chem. Soc.
1992,
114:
10138
3f
Mahmoudian M.
Noble D.
Drake CS.
Middleton RF.
Montgomery DS.
Piercey JE.
Ramlakhan D.
Todd M.
Dawson MJ.
Enzyme Microb. Technol.
1997,
20:
393
4a For
a review, see: Li C.-J.
Chan T.-H.
Tetrahedron
1999,
55:
11149
4b
Li C.-J.
Chan T.-H.
J. Chem. Soc., Chem. Commun.
1992,
747
4c
Kim E.
Gordon DM.
Schmid W.
Whitesides GM.
J. Org. Chem.
1993,
58:
5500
4d
Gordon DM.
Whitesides GM.
J.
Org. Chem.
1993,
58:
7937
4e
Li CJ.
Lee MC.
Wei ZY.
Chan TH.
Can. J. Chem.
1994,
72:
1181
4f
Chan T.-H.
Lee M.-C.
J. Org. Chem.
1995,
60:
4228
4g
Choi S.-K.
Lee S.
Whitesides GM.
J.
Org. Chem.
1996,
61:
8739
4h
Banwell MG.
Savi CD.
Watson K.
Chem. Commun.
1998,
1189
5a
Suttajit M.
Urban C.
McLean RL.
J. Biol. Chem.
1971,
246:
810
5b
Kim M.-J.
Hennen WJ.
Sweers HM.
Wong C.-H.
J. Am. Chem.
Soc.
1988,
110:
6481
5c
Fitz W.
Schwark JR.
Wong C.-H.
J.
Org. Chem.
1995,
60:
3663
6a
Kuhn R.
Gauhe A.
Chem.
Ber.
1965,
98:
395
6b
McLean RL.
Suttajit M.
Beidler J.
Winzler RJ.
J. Biol.
Chem.
1971,
246:
803
6c
Peters BP.
Aronson NN.
Carbohydr.
Res.
1976,
47:
345
6d
Reuter G.
Schauer R.
Szeiki C.
Kamerling JP.
Vliegenthart JFG.
Glycoconjugate J.
1989,
6:
35
Synthesis of derivatives of 10a:
7a from d-glucuronolactone: Vlahov IR.
Vlahova PI.
Schmidt RR.
Tetrahedron
Lett.
1991,
32:
7025
7b From d-serine: Chappell MD.
Halcomb RL.
Org. Lett.
2000,
2:
2003
7c From l-ascorbic
acid: Banwell M.
De Savi C.
Hockless D.
Watson K.
Chem.
Commun.
1998,
645
8
Knorst M.
Fessner W.-D.
Adv. Synth. Catal.
2001,
343:
698
9a
Jurczak J.
Golebiowski A.
Chem.
Rev.
1989,
89:
149
9b
Reetz MT.
Angew. Chem., Int. Ed. Engl.
1991,
30:
1531
9c
Steurer S.
Podlech J.
Eur. J. Org. Chem.
1999,
1551
10
Hung RR.
Straub JA.
Whitesides GM.
J. Org. Chem.
1991,
56:
3849
11
Waldmann H.
Sebastian D.
Chem. Rev.
1994,
94:
911
12 Typical reaction conditions for the
indium-mediated allylation: To a solution of the aminoaldehyde (1.0
mmol) and ethyl 2-(bromomethyl)-acrylate
[16]
(386
mg; 2.0 mmol) in a mixture made from 12.5 mL EtOH and 2.5 mL 0.1
M HCl was added indium powder (230 mg; 2.0 mmol) at r.t. The suspension
was vigorously stirred until TLC indicated complete conversion of
the starting material, and was then filtered through a pad of Celite.
Water was added (20 mL), and the resulting mixture was concentrated
to 20 mL under vacuum followed by extraction with EtOAc (3 × 30
mL). The combined organic layers were washed with brine (1 × 20
mL) and water (1 × 20 mL), dried over
Na2SO4, filtered, and concentrated under vacuum.
Without further purification, the remaining crude colorless solid
was taken up in MeOH and treated with ozone at -78 °C.
Ozonide reduction (Me2S, r.t.) followed by flash chromatography provided
compounds 9a-d as
colorless syrups, which were hydrolyzed by treatment with 2 equivalents
of aq LiOH to furnish stereoisomerically pure truncated sialic acid derivatives 10a-d.
Spectroscopic
data: 10a: 1H NMR (300
MHz, D2O): δ = 3.82
(m, 1 H, 4-H), 3.67 (m, 2 H, 6-H), 3.53 (m, 1 H,
5-H),
2.15 (dd, 1 H, J
3eq,3ax = 13.1
Hz, J
3eq, 4 = 4.9
Hz, 3eq-H), 1.90 (s, 3 H, CH3), 1.69 (dd,
1 H, J
3ax,3eq = 13.1
Hz, J
3ax,4 = 11.2
Hz, 3ax-H); 13C NMR (75
MHz, D2O): δ = 177.23
(C-1), 175.07 (C=O), 97.75 (C-2), 68.27 (C-4), 63.67 (C-6),
54.36 (C-5), 41.33 (C-3), 24.40 (CH3); ESI-MS: m/z = 218
([M-H]-, 100). 10b: 1H
NMR (300 MHz, D2O): δ = 7.26-7.38
(m, 5 H, Har), 3.58 (s, 2 H, CH2), 3.48-3.96 (m,
4 H, 4-,5-,6-H), 2.14 (dd, 1 H, J
3eq,3ax = 13.0
Hz, J
3eq,4 = 4.8
Hz, 3eq-H), 1.88 (dd, 1 H, J
3ax,3eq = 13.0
Hz, J
3ax,4 = 11.1
Hz, 3ax-H); 13C NMR (75
MHz, D2O): δ = 178.27
(C=O), 177.98 (C-1), 138.07 (Ci), 131.64, 131.29,
129.63 (CH
o
,
m
,
p
),
99.24 (C-2), 69.26 (C-4), 64.19 (C-6), 55.42 (C-5), 45.28 (CH2),
42.50 (C-3); ESI-MS: m/z = 318 ([M + Na]+,
100), 300(40). 10c: 1H
NMR (300 MHz, D2O): δ = 3.65-3.93
(5 H, m, 4-,5-,6-,7-H), 2.32 (1 H, dd, J
3eq,3ax = 13.0
Hz, J
3eq,4 = 5.0
Hz, 3eq-H), 2.04 (3 H, s, CH3), 1.87 (1 H,
dd, J
3ax,3eq = 13.0
Hz, J
3ax,4 = 11.6
Hz, 3ax-H); 13C NMR (75
MHz, D2O): δ = 177.77
(C-1), 175.1 (C=O), 98.17 (C-2), 75.80 (C-6), 69.39 (C-4),
63.80 (C-7), 55.22 (C-5), 41.91 (C-3), 25.03 (CH3); ESI-MS:
m/z
= 248
([M - H]-, 100), 230(41). 10d: 1H NMR (300 MHz,
D2O): δ = 7.28-7.40
(5 H, m, Har), 3.63 (2 H, s, CH2), 3.50-3.91
(5 H, m, 4-,5-,6-,7-H), 2.33 (1 H, dd, J
3eq,3ax = 12.9
Hz, J
3eq,
4 = 4.9
Hz, 3eq-H), 1.84 (1 H, dd, J
3ax,3eq = 12.9
Hz, J
3ax,
4 = 11.8
Hz,
3ax-H); 13C
NMR (75 MHz, D2O): δ = 178.16
(C=O), 175.66 (C-1), 137.72 (Ci), 131.92, 131.78,
130.19 (C
o
,
m
,
p
),
97.81 (C-2), 75.70 (C-6), 68.94 (C-4), 63.86 (C-7), 55.16
(C-5),
45.10 (CH2), 41.79 (C-3); ESI-MS: m/z = 420 ([M + Na + 4
H2O]+, 100), 402 ([M + Na + 3
H2O]+, 95)
13
Warwel M.
Fessner W.-D.
Synlett
2000,
6:
865
14 The origin of the pronounced selectivity
at low pH has not been thoroughly investigated yet but it may be
speculated that protonation of the electrophile will lead to a tighter transition
state for the addition. For an in-depth discussion, see: Paquette LA.
Mitzel TM.
J.
Am. Chem. Soc.
1996,
118:
1931
15
Lemieux GA.
Bertozzi CR.
Chem. Biol.
2001,
8:
265
16
Villieras J.
Rambaud M.
Org. Synth.
1988,
66:
220