References
-
2a Fuji K, Noide M, Usami Y, and Takigawa T. inventors; Jpn.
Kokai Tokkyo Koho JP 62209073 A2.
; Chem. Abstr. 1987, 110, 135247
-
2b
Saladino R.
Crestini C.
Palamara AT.
Danti MC.
Manetti F.
Corelli F.
Garaci E.
Botta M.
J. Med. Chem.
2001,
44:
4554
-
2c
De Kimpe N.
Tehrani KA.
Stevens C.
De Cooman P.
Tetrahedron
1997,
53:
3693
- 3 Scott WJ, Popp MA, and Hartsough DS. inventors; WO 9743240 A1.
; Chem. Abstr. 1997, 128, 22719
- 4
Geronikaki AA.
Hadjipavlou-Litina DJ.
Arzneim.-Forsch.
1998,
48:
263
- 5 Matuz J, Csehi A, Bihari M, Barta S, Gizella SI, Szporny L, Ezer E, Saghy K, Domany G, and Hajos G. inventors; Hung.
Teljes HU 67625 A2.
; Chem. Abstr. 1995, 124, 55943
- 6 Giardina GAM, Grugni M, Graziani D, and Raveglia LF. inventors; WO
9852942 A1.
; Chem. Abstr.1998, 130, 24978
-
For synthesis via Friedel-Crafts
reaction see:
-
7a
Niu Z.
Liu C.
Shi L.
Huaxue
Shiji
1995,
17:
317 ; Chem. Abstr. 1995, 124, 231951
-
7b Seko S, and Furuya A. inventors; Jpn. Kokai Tokkyo Koho JP
11292808 A2.
; Chem. Abstr. 1999, 131, 311907
-
7c
Miyai T.
Onishi Y.
Baba A.
Tetrahedron
1999,
55:
1017
-
7d
Kimura N.
Tukamuku S.
Bull. Chem. Soc. Jpn.
1991,
64:
2433
-
For synthesis via chemoselective
oxidation of alcohols see:
-
8a
Singh J.
Sharma M.
Chhibber M.
Kaur J.
Kad GL.
Synth.
Commun.
2000,
30:
3941
-
8b
Zhang G.
Li W.
Cai K.
Li Z.
Huaxue Tongbao
1992,
4:
34 ; Chem. Abstr. 1992, 118, 123774
-
8c
Muzart J.
Ajjou AN.
Synth. Commun.
1992,
22:
1993
-
For synthesis via chemoselective
reduction see:
-
9a
Barrero AF.
Alvarez-Manzaneda EJ.
Chahboun R.
Meneses R.
Synlett
2000,
197
-
9b
Isobe K.
Mohri K.
Sano H.
Taga J.
Tsuda Y.
Chem. Pharm.
Bull.
1986,
34:
3029
-
For synthesis via acyl transfer
reactions with phosphine oxides see:
-
10a
Wallace P.
Warren S.
J. Chem. Soc., Perkin Trans.
1
1988,
2971
-
10b
Wallace P.
Warren S.
Tetrahedron Lett.
1985,
26:
5713
-
For other methods see:
-
11a
Fuji K.
Node M.
Usami Y.
Chem.
Lett.
1986,
6:
961
-
11b
Fuji K.
Usami Y.
Kiryu Y.
Node M.
Synthesis
1992,
852
-
11c
Bretsch W.
Reissig HU.
Liebigs Ann. Chem.
1987,
3:
175
-
12a
Niita M.
Yi A.
Kobayashi T.
Bull. Chem. Soc. Jpn.
1985,
58:
991
-
12b
Echavarren AM.
Perez M.
Castano AM.
Cuerva JM.
J.
Org. Chem.
1994,
59:
4179
-
13a
Taura Y.
Tanaka M.
Wu XM.
Funakoshi K.
Sakai K.
Tetrahedron
1991,
47:
4879
-
13b
O’Connor JM.
Pu L.
Rheingold AL.
J. Am. Chem. Soc.
1990,
112:
6232
-
14a Pal M, Rao YK, Rajagopalan R, Misra P, Kumar PM, and Rao CS. inventors; World
Patent WO 01/90097.
; Chem. Abstr. 2002, 136, 5893
-
14b
Pattabiraman VR.
Padakanti PS.
Veeramaneni VR.
Pal M.
Yeleswarapu KR.
Synlett
2002,
947
-
14c For a brief overview
see: Scrip
2002,
112:
43
- 15 For a recent example, see: Shuki A.
Keiko K.
Jiro T.
Tsunehisa H.
Hatsuo Y.
Masao K.
J. Org. Chem.
2001,
66:
7919
-
16a
Sonogashira K.
Tohda Y.
Hagihara N.
Tetrahedron
1975,
16:
4467
-
16b
Sonogashira K. In Comprehensive Organic
Synthesis
Vol. 3:
Trost BM.
Fleming I.
Pergamon
Press;
New York:
1991.
p.521
-
16c
Pal M.
Kundu NG.
J. Chem. Soc., Perkin
Trans. 1
1996,
449
-
For earlier reports on the occasional
use of aryl bromide, see:
-
17a
Dieck HA.
Heck RF.
J.
Organomet. Chem.
1975,
93:
259
-
17b
Takahashi S.
Kuroyama Y.
Sonogashira K.
Hagihara N.
Synthesis
1980,
627
-
17c
Austin WB.
Bilow N.
Kelleghan WJ.
Lau KSY.
J.
Org. Chem.
1981,
46:
2280
-
17d
Nguefack J.-F.
Bolitt V.
Sinou D.
Tetrahedron
Lett.
1996,
37:
5527
-
17e
Villemin D.
Goussu D.
Heterocycles
1989,
29:
1255
-
17f
De la Rosa MA.
Velarde E.
Guzman A.
Synth. Commun.
1990,
20:
2059
-
17g
Bleicher L.
Cosford DP.
Synlett
1995,
1115
-
17h
Tischler A.
Lanza TJ.
Tetrahedron Lett.
1986,
27:
1653
-
17i
Sakamoto T.
Kondo Y.
Yamanaka H.
Heterocycles
1986,
24:
31
-
18a
Krause N.
Thorand S.
J.
Org. Chem.
1998,
63:
8551
-
18b
Rosenblum SB.
Huynh T.
Afonso A.
Davis HR.
Tetrahedron
2000,
56:
5735
-
18c
Brimble MA.
Pavia GS.
Stevenson RJ.
Tetrahedron Lett.
2002,
43:
1735
- 19
Hundertmark T.
Littke AF.
Buchwald SL.
Fu GC.
Org.
Lett.
2000,
2:
1729
-
21a
Rossi R.
Carpita A.
Bigelli C.
Tetrahedron Lett.
1985,
26:
523
-
21b
Kundu NG.
Pal M.
Chowdhury C.
J. Chem. Res., Synop.
1993,
432
-
21c
Lei A.
Srivastava M.
Zhang X.
J.
Org. Chem.
2002,
67:
1969 and
references therein.
-
22a
Fukuyama T.
Shinmen M.
Nishitani S.
Sato M.
Ryu I.
Org. Lett.
2002,
4:
1691
-
22b
Wu M.-J.
Wei L.-M.
Lin C.-F.
Leou S.-P.
Wei L.-L.
Tetrahedron
2001,
57:
7839
-
24a
Palladium
metal deposited on the wall of the reaction flask perhaps did not
participate in the hydration step.
-
24b
The alkyne was purified
carefully using column chromatography in order to ensure the removal
of the traces amount of Pd-catalyst.
-
25a
Tsuchimoto T.
Joya T.
Shirakawa E.
Kawakami Y.
Synlett
2000,
1777 ; and references therein
-
25b
Olah GA.
Meidar D.
Synthesis
1978,
671
-
25c
Noyce DS.
Matesich AM.
Peterson E.
J. Am. Chem. Soc.
1967,
89:
6225
-
25d
Bosch E.
Jeffries L.
Tetrahedron Lett.
2001,
42:
8141
-
25e
Yamanaka H.
Shiraiwa M.
Sakamoto T.
Konno S.
Chem. Pharm. Bull.
1981,
29:
3548
- 26
Imi K.
Imai K.
Utimoto K.
Tetrahedron
Lett.
1987,
28:
3127
-
27a For
a discussion on generation of Pd(0) from Pd(II) salts in Et3N,
see: Hegedus LS.
Angew. Chem.,
Int. Ed. Engl.
1988,
27:
1113
-
27b See also: Jeevanandam A.
Narkunan K.
Ling Y.-C.
J. Org. Chem.
2001,
66:
6014
-
27c For oxidation of Pd(0)
to Pd(II) in the presence of oxygen, see: Kataoka H.
Watanabe K.
Miyazaki K.
Tahara S.
Ogu K.
Matsuoka R.
Goto K.
Chem. Lett.
1990,
1705
-
27d See also: Kataoka H.
Watanabe K.
Goto K.
Tetrahedron Lett.
1990,
31:
4181
-
For hydration of alkynes controlled
by neighboring group participation, see:
-
28a
Stork G.
Borch R.
J. Am. Chem. Soc.
1964,
86:
935
-
28b
Hooz J.
Layton RB.
Can. J. Chem.
1970,
50:
1105 ; See also ref. 26
-
O-Formylation of alcohols using
DMF in the presence of other reagents has been reported, see for
example:
-
29a
Barluenga J.
Campos PJ.
Gonzalez-Nunez E.
Asensio G.
Synthesis
1985,
426
-
29b
Luca LD.
Giacomelli G.
Porcheddu A.
J. Org. Chem.
2002,
67:
5152
-
30a Commons TJ, Musial CL, and Christman S. inventors; WO 9857928 A1.
; Chem. Abstr. 1998, 130, 81279
-
30b Commons TJ, and Christman S. inventors; US 5977170 A.
; Chem. Abstr. 1999, 131, 310456
-
30c
Tomita Y.
Kabashima S.
Okawara T.
Yamasaki T.
Furukawa M.
J.
Heterocycl. Chem.
1990,
27:
707
-
31a
Miller NE.
Hammett F.
Saltissi S.
Rao S.
Van Zeller H.
Coltart J.
Lewis B.
Br. Med. J.
1981,
282:
1741
-
31b
Picardo M.
Massey JB.
Kuhn DE.
Gotto AM.
Gianturco SH.
Pownall HJ.
Arteriosclerosis
1986,
6:
434 ; Chem. Abstr. 1986, 105 188171
- 32
Mewshaw RE.
Silverman LS.
Mathew RM.
Kaiser C.
Sherrill RG.
Cheng M.
Tiffany CW.
Karbon EW.
Bailey MA.
Borosky SA.
Ferkany JW.
Abreu ME.
J. Med. Chem.
1993,
36:
1488
1 DRL Publication No. 251
20 Dimerization of terminal alkyne in
the presence of copper(I) salt and amine base is a required process
for
the in situ conversion of Pd(II) to the active catalyst
Pd(0), see ref. 16a.
23
Typical procedure
for the synthesis of 4-substituted 1-aryl-1-butanones: Preparation
of Ia: To a solution of 4-bromoacetophenone
(1 g, 5.03 mmol) in DMF (10mL) was added PdCl2(PPh3)2 (0.10
g, 0.15 mmol)and Et3N (4.06 g, 40.20 mmol) under nitrogen
atmosphere. The mixture was stirred for 15 min at 25 C
and then 3-butyn-1-ol (0.71 g, 10.05 mmol) was added very slowly
via syringe to the stirred reaction mixture. The temperature of
the mixture was increased slowly to 80 °C
and stirring continued for 8 h. During the reaction, which was followed
by TLC, precipitation of Et3N·HBr as crystalline
solid was observed. After the complete consumption of the aryl bromide,
the reaction mixture was cooled to r.t. and 20% HCl solution (100
mL) was added to it with vigorous stirring. After stirring for 8
h the mixture was diluted with water and EtOAc (150 mL), filtered
through a small pad of celite (EtOAc). The organic layer was collected,
washed with H2O (2 × 100 mL),
dried over anhyd Na2SO4, filtered and concentrated
under low vacuum. The residue thus obtained was purified by flash
chromatography to afford the desired compound. Compound Ia was isolated in 59% yield as
light yellow solid, mp 91-92 °C
(hexane); IR (KBr): 3342 (br, OH), 1678 (C=O), 1502 cm-1; 1H
NMR (200 MHz, CDCl3): δ = 8.04
(m, 4 H, ArH), 3.76 (t, J = 5.91
Hz, 2 H, CH
2OH), 3.16 (t, J = 6.98 Hz,
2 H, CH2CO), 2.65 (s, 3 H, CH3), 2.09-1.97
(m, 2 H, CH2), 1.65 (br s, D2O exchangeable,
1 H, OH); M (CI, I-butane): m/z (%) = 207
(100) [MH+]; 13C
NMR: 199.89, 197.61, 139.94, 139.87, 128.37 (2 C), 128.13 (2 C), 61.71,
35.42, 26.74, 26.62.
Spectral data for 1d:
pale yellow oil; IR (KBr): 3420 (br, OH), 1679 (C=O), 1607
cm-1; 1H NMR (200
MHz, CDCl3): δ = 7.90
(d, J = 7.81
Hz, 2 H, ArH), 7.29 (d, J = 7.80
Hz,
2 H, ArH), 3.76 (t, J = 5.86
Hz, 2 H, CH
2OH), 3.13 (t, J = 6.84 Hz,
2 H, CH2CO), 2.43 (s, 3 H, CH3), 2.09-1.97
(m,
2 H, CH2), 1.80 (br s, D2O exchangeable, 1
H, OH); MS (CI, I-butane): m/z (%) = 179
(100) [MH+]; 13C
NMR: 199.12, 143.87, 134.27, 129.20 (2 C), 128.15 (2 C), 62.28, 35.21,
27.00, 21.64.
Spectral data for 1ff:
IR (KBr): 1719 (OCHO), 1665 (C=O), 1588 cm-1; 1H
NMR (200 MHz, CDCl3): δ = 8.07 (s,
1 H, CHO), 7.88 (d, J = 8.33
Hz, 2 H, ArH), 7.27 (d, J = 8.30
Hz, 2 H, ArH), 4.28 (t, J = 6.31
Hz, 2 H, CH2O), 3.05 (t, J = 7.13 Hz,
2 H, CH2CO), 2.53 (s, 3 H, SCH3), 2.16-2.09
(m, 2 H, CH2); MS (CI, I-butane): m/z (%) = 239
(100) [MH+].