Subscribe to RSS
DOI: 10.1055/s-2002-35587
Regioselective Synthesis of 4-Substituted-1-Aryl-1-butanones Using a Sonogashira-Hydration Strategy: Copper-Free Palladium-Catalyzed Reaction of Terminal Alkynes with Aryl Bromides [1]
Publication History
Publication Date:
20 November 2002 (online)
Abstract
A simple one-pot procedure has been developed for the synthesis of 4-substituted-1-aryl-1-butanones through copper-free Sonogashira reaction of aryl bromides with terminal alkynes in DMF under inert atmosphere, followed by the treatment with acid in the presence of oxygen. A variety of aryl bromides was reacted with 3-butyn-1-ol according to this procedure to give the expected compounds in good yield. The mechanism of the reaction and applications of the methodology are discussed.
Key words
1-aryl-1-butanones - aryl bromide - 3-butyn-1-ol - palladium catalyst - hydration
DRL Publication No. 251
-
2a
Fuji K,Noide M,Usami Y, andTakigawa T. inventors; Jpn. Kokai Tokkyo Koho JP 62209073 A2. ; Chem. Abstr. 1987, 110, 135247 -
2b
Saladino R.Crestini C.Palamara AT.Danti MC.Manetti F.Corelli F.Garaci E.Botta M. J. Med. Chem. 2001, 44: 4554 -
2c
De Kimpe N.Tehrani KA.Stevens C.De Cooman P. Tetrahedron 1997, 53: 3693 - 3
Scott WJ,Popp MA, andHartsough DS. inventors; WO 9743240 A1. ; Chem. Abstr. 1997, 128, 22719 - 4
Geronikaki AA.Hadjipavlou-Litina DJ. Arzneim.-Forsch. 1998, 48: 263 - 5
Matuz J,Csehi A,Bihari M,Barta S,Gizella SI,Szporny L,Ezer E,Saghy K,Domany G, andHajos G. inventors; Hung. Teljes HU 67625 A2. ; Chem. Abstr. 1995, 124, 55943 - 6
Giardina GAM,Grugni M,Graziani D, andRaveglia LF. inventors; WO 9852942 A1. ; Chem. Abstr.1998, 130, 24978 - For synthesis via Friedel-Crafts reaction see:
-
7a
Niu Z.Liu C.Shi L. Huaxue Shiji 1995, 17: 317 ; Chem. Abstr. 1995, 124, 231951 -
7b
Seko S, andFuruya A. inventors; Jpn. Kokai Tokkyo Koho JP 11292808 A2. ; Chem. Abstr. 1999, 131, 311907 -
7c
Miyai T.Onishi Y.Baba A. Tetrahedron 1999, 55: 1017 -
7d
Kimura N.Tukamuku S. Bull. Chem. Soc. Jpn. 1991, 64: 2433 - For synthesis via chemoselective oxidation of alcohols see:
-
8a
Singh J.Sharma M.Chhibber M.Kaur J.Kad GL. Synth. Commun. 2000, 30: 3941 -
8b
Zhang G.Li W.Cai K.Li Z. Huaxue Tongbao 1992, 4: 34 ; Chem. Abstr. 1992, 118, 123774 -
8c
Muzart J.Ajjou AN. Synth. Commun. 1992, 22: 1993 - For synthesis via chemoselective reduction see:
-
9a
Barrero AF.Alvarez-Manzaneda EJ.Chahboun R.Meneses R. Synlett 2000, 197 -
9b
Isobe K.Mohri K.Sano H.Taga J.Tsuda Y. Chem. Pharm. Bull. 1986, 34: 3029 - For synthesis via acyl transfer reactions with phosphine oxides see:
-
10a
Wallace P.Warren S. J. Chem. Soc., Perkin Trans. 1 1988, 2971 -
10b
Wallace P.Warren S. Tetrahedron Lett. 1985, 26: 5713 - For other methods see:
-
11a
Fuji K.Node M.Usami Y. Chem. Lett. 1986, 6: 961 -
11b
Fuji K.Usami Y.Kiryu Y.Node M. Synthesis 1992, 852 -
11c
Bretsch W.Reissig HU. Liebigs Ann. Chem. 1987, 3: 175 -
12a
Niita M.Yi A.Kobayashi T. Bull. Chem. Soc. Jpn. 1985, 58: 991 -
12b
Echavarren AM.Perez M.Castano AM.Cuerva JM. J. Org. Chem. 1994, 59: 4179 -
13a
Taura Y.Tanaka M.Wu XM.Funakoshi K.Sakai K. Tetrahedron 1991, 47: 4879 -
13b
O’Connor JM.Pu L.Rheingold AL. J. Am. Chem. Soc. 1990, 112: 6232 -
14a
Pal M,Rao YK,Rajagopalan R,Misra P,Kumar PM, andRao CS. inventors; World Patent WO 01/90097. ; Chem. Abstr. 2002, 136, 5893 -
14b
Pattabiraman VR.Padakanti PS.Veeramaneni VR.Pal M.Yeleswarapu KR. Synlett 2002, 947 - 14c For a brief overview see: Scrip 2002, 112: 43
- 15 For a recent example, see:
Shuki A.Keiko K.Jiro T.Tsunehisa H.Hatsuo Y.Masao K. J. Org. Chem. 2001, 66: 7919 -
16a
Sonogashira K.Tohda Y.Hagihara N. Tetrahedron 1975, 16: 4467 -
16b
Sonogashira K. In Comprehensive Organic Synthesis Vol. 3:Trost BM.Fleming I. Pergamon Press; New York: 1991. p.521 -
16c
Pal M.Kundu NG. J. Chem. Soc., Perkin Trans. 1 1996, 449 - For earlier reports on the occasional use of aryl bromide, see:
-
17a
Dieck HA.Heck RF. J. Organomet. Chem. 1975, 93: 259 -
17b
Takahashi S.Kuroyama Y.Sonogashira K.Hagihara N. Synthesis 1980, 627 -
17c
Austin WB.Bilow N.Kelleghan WJ.Lau KSY. J. Org. Chem. 1981, 46: 2280 -
17d
Nguefack J.-F.Bolitt V.Sinou D. Tetrahedron Lett. 1996, 37: 5527 -
17e
Villemin D.Goussu D. Heterocycles 1989, 29: 1255 -
17f
De la Rosa MA.Velarde E.Guzman A. Synth. Commun. 1990, 20: 2059 -
17g
Bleicher L.Cosford DP. Synlett 1995, 1115 -
17h
Tischler A.Lanza TJ. Tetrahedron Lett. 1986, 27: 1653 -
17i
Sakamoto T.Kondo Y.Yamanaka H. Heterocycles 1986, 24: 31 -
18a
Krause N.Thorand S. J. Org. Chem. 1998, 63: 8551 -
18b
Rosenblum SB.Huynh T.Afonso A.Davis HR. Tetrahedron 2000, 56: 5735 -
18c
Brimble MA.Pavia GS.Stevenson RJ. Tetrahedron Lett. 2002, 43: 1735 - 19
Hundertmark T.Littke AF.Buchwald SL.Fu GC. Org. Lett. 2000, 2: 1729 -
21a
Rossi R.Carpita A.Bigelli C. Tetrahedron Lett. 1985, 26: 523 -
21b
Kundu NG.Pal M.Chowdhury C. J. Chem. Res., Synop. 1993, 432 -
21c
Lei A.Srivastava M.Zhang X. J. Org. Chem. 2002, 67: 1969 and references therein. -
22a
Fukuyama T.Shinmen M.Nishitani S.Sato M.Ryu I. Org. Lett. 2002, 4: 1691 -
22b
Wu M.-J.Wei L.-M.Lin C.-F.Leou S.-P.Wei L.-L. Tetrahedron 2001, 57: 7839 -
24a
Palladium metal deposited on the wall of the reaction flask perhaps did not participate in the hydration step.
-
24b
The alkyne was purified carefully using column chromatography in order to ensure the removal of the traces amount of Pd-catalyst.
-
25a
Tsuchimoto T.Joya T.Shirakawa E.Kawakami Y. Synlett 2000, 1777 ; and references therein -
25b
Olah GA.Meidar D. Synthesis 1978, 671 -
25c
Noyce DS.Matesich AM.Peterson E. J. Am. Chem. Soc. 1967, 89: 6225 -
25d
Bosch E.Jeffries L. Tetrahedron Lett. 2001, 42: 8141 -
25e
Yamanaka H.Shiraiwa M.Sakamoto T.Konno S. Chem. Pharm. Bull. 1981, 29: 3548 - 26
Imi K.Imai K.Utimoto K. Tetrahedron Lett. 1987, 28: 3127 -
27a For
a discussion on generation of Pd(0) from Pd(II) salts in Et3N,
see:
Hegedus LS. Angew. Chem., Int. Ed. Engl. 1988, 27: 1113 -
27b See also:
Jeevanandam A.Narkunan K.Ling Y.-C. J. Org. Chem. 2001, 66: 6014 -
27c For oxidation of Pd(0)
to Pd(II) in the presence of oxygen, see:
Kataoka H.Watanabe K.Miyazaki K.Tahara S.Ogu K.Matsuoka R.Goto K. Chem. Lett. 1990, 1705 -
27d See also:
Kataoka H.Watanabe K.Goto K. Tetrahedron Lett. 1990, 31: 4181 - For hydration of alkynes controlled by neighboring group participation, see:
-
28a
Stork G.Borch R. J. Am. Chem. Soc. 1964, 86: 935 -
28b
Hooz J.Layton RB. Can. J. Chem. 1970, 50: 1105 ; See also ref. 26 - O-Formylation of alcohols using DMF in the presence of other reagents has been reported, see for example:
-
29a
Barluenga J.Campos PJ.Gonzalez-Nunez E.Asensio G. Synthesis 1985, 426 -
29b
Luca LD.Giacomelli G.Porcheddu A. J. Org. Chem. 2002, 67: 5152 -
30a
Commons TJ,Musial CL, andChristman S. inventors; WO 9857928 A1. ; Chem. Abstr. 1998, 130, 81279 -
30b
Commons TJ, andChristman S. inventors; US 5977170 A. ; Chem. Abstr. 1999, 131, 310456 -
30c
Tomita Y.Kabashima S.Okawara T.Yamasaki T.Furukawa M.
J. Heterocycl. Chem. 1990, 27: 707 -
31a
Miller NE.Hammett F.Saltissi S.Rao S.Van Zeller H.Coltart J.Lewis B. Br. Med. J. 1981, 282: 1741 -
31b
Picardo M.Massey JB.Kuhn DE.Gotto AM.Gianturco SH.Pownall HJ. Arteriosclerosis 1986, 6: 434 ; Chem. Abstr. 1986, 105 188171 - 32
Mewshaw RE.Silverman LS.Mathew RM.Kaiser C.Sherrill RG.Cheng M.Tiffany CW.Karbon EW.Bailey MA.Borosky SA.Ferkany JW.Abreu ME. J. Med. Chem. 1993, 36: 1488
References
DRL Publication No. 251
20Dimerization of terminal alkyne in
the presence of copper(I) salt and amine base is a required process
for
the in situ conversion of Pd(II) to the active catalyst
Pd(0), see ref. 16a.
Typical procedure
for the synthesis of 4-substituted 1-aryl-1-butanones: Preparation
of Ia: To a solution of 4-bromoacetophenone
(1 g, 5.03 mmol) in DMF (10mL) was added PdCl2(PPh3)2 (0.10
g, 0.15 mmol)and Et3N (4.06 g, 40.20 mmol) under nitrogen
atmosphere. The mixture was stirred for 15 min at 25 C
and then 3-butyn-1-ol (0.71 g, 10.05 mmol) was added very slowly
via syringe to the stirred reaction mixture. The temperature of
the mixture was increased slowly to 80 °C
and stirring continued for 8 h. During the reaction, which was followed
by TLC, precipitation of Et3N·HBr as crystalline
solid was observed. After the complete consumption of the aryl bromide,
the reaction mixture was cooled to r.t. and 20% HCl solution (100
mL) was added to it with vigorous stirring. After stirring for 8
h the mixture was diluted with water and EtOAc (150 mL), filtered
through a small pad of celite (EtOAc). The organic layer was collected,
washed with H2O (2 × 100 mL),
dried over anhyd Na2SO4, filtered and concentrated
under low vacuum. The residue thus obtained was purified by flash
chromatography to afford the desired compound. Compound Ia was isolated in 59% yield as
light yellow solid, mp 91-92 °C
(hexane); IR (KBr): 3342 (br, OH), 1678 (C=O), 1502 cm-1; 1H
NMR (200 MHz, CDCl3): δ = 8.04
(m, 4 H, ArH), 3.76 (t, J = 5.91
Hz, 2 H, CH
2OH), 3.16 (t, J = 6.98 Hz,
2 H, CH2CO), 2.65 (s, 3 H, CH3), 2.09-1.97
(m, 2 H, CH2), 1.65 (br s, D2O exchangeable,
1 H, OH); M (CI, I-butane): m/z (%) = 207
(100) [MH+]; 13C
NMR: 199.89, 197.61, 139.94, 139.87, 128.37 (2 C), 128.13 (2 C), 61.71,
35.42, 26.74, 26.62.
Spectral data for 1d:
pale yellow oil; IR (KBr): 3420 (br, OH), 1679 (C=O), 1607
cm-1; 1H NMR (200
MHz, CDCl3): δ = 7.90
(d, J = 7.81
Hz, 2 H, ArH), 7.29 (d, J = 7.80
Hz,
2 H, ArH), 3.76 (t, J = 5.86
Hz, 2 H, CH
2OH), 3.13 (t, J = 6.84 Hz,
2 H, CH2CO), 2.43 (s, 3 H, CH3), 2.09-1.97
(m,
2 H, CH2), 1.80 (br s, D2O exchangeable, 1
H, OH); MS (CI, I-butane): m/z (%) = 179
(100) [MH+]; 13C
NMR: 199.12, 143.87, 134.27, 129.20 (2 C), 128.15 (2 C), 62.28, 35.21,
27.00, 21.64.
Spectral data for 1ff:
IR (KBr): 1719 (OCHO), 1665 (C=O), 1588 cm-1; 1H
NMR (200 MHz, CDCl3): δ = 8.07 (s,
1 H, CHO), 7.88 (d, J = 8.33
Hz, 2 H, ArH), 7.27 (d, J = 8.30
Hz, 2 H, ArH), 4.28 (t, J = 6.31
Hz, 2 H, CH2O), 3.05 (t, J = 7.13 Hz,
2 H, CH2CO), 2.53 (s, 3 H, SCH3), 2.16-2.09
(m, 2 H, CH2); MS (CI, I-butane): m/z (%) = 239
(100) [MH+].