Synlett 2002(12): 1976-1982
DOI: 10.1055/s-2002-35587
LETTER
© Georg Thieme Verlag Stuttgart · New York

Regioselective Synthesis of 4-Substituted-1-Aryl-1-butanones Using a Sonogashira-Hydration Strategy: Copper-Free Palladium-Catalyzed Reaction of Terminal Alkynes with Aryl Bromides [1]

Manojit Pal*, Karuppasamy Parasuraman, Shalabh Gupta, Koteswar Rao Yeleswarapu
Chemistry-Discovery Research, Dr. Reddy’s Laboratories Ltd., Bollaram Road, Miyapur, Hyderabad 500050, India
Fax: +91(40)3045438 ; e-Mail: manojitpal@drreddys.com;
Further Information

Publication History

Received 11 October 2002
Publication Date:
20 November 2002 (online)

Abstract

A simple one-pot procedure has been developed for the synthesis of 4-substituted-1-aryl-1-butanones through copper-free Sonogashira reaction of aryl bromides with terminal alkynes in DMF under inert atmosphere, followed by the treatment with acid in the presence of oxygen. A variety of aryl bromides was reacted with 3-butyn-1-ol according to this procedure to give the expected compounds in good yield. The mechanism of the reaction and applications of the methodology are discussed.

1

DRL Publication No. 251

    References

  • 2a Fuji K, Noide M, Usami Y, and Takigawa T. inventors; Jpn. Kokai Tokkyo Koho JP 62209073  A2.  ; Chem. Abstr. 1987, 110, 135247
  • 2b Saladino R. Crestini C. Palamara AT. Danti MC. Manetti F. Corelli F. Garaci E. Botta M. J. Med. Chem.  2001,  44:  4554 
  • 2c De Kimpe N. Tehrani KA. Stevens C. De Cooman P. Tetrahedron  1997,  53:  3693 
  • 3 Scott WJ, Popp MA, and Hartsough DS. inventors; WO 9743240  A1.  ; Chem. Abstr. 1997, 128, 22719
  • 4 Geronikaki AA. Hadjipavlou-Litina DJ. Arzneim.-Forsch.  1998,  48:  263 
  • 5 Matuz J, Csehi A, Bihari M, Barta S, Gizella SI, Szporny L, Ezer E, Saghy K, Domany G, and Hajos G. inventors; Hung. Teljes HU 67625  A2.  ; Chem. Abstr. 1995, 124, 55943
  • 6 Giardina GAM, Grugni M, Graziani D, and Raveglia LF. inventors; WO 9852942  A1.  ; Chem. Abstr.1998, 130, 24978
  • For synthesis via Friedel-Crafts reaction see:
  • 7a Niu Z. Liu C. Shi L. Huaxue Shiji  1995,  17:  317 ; Chem. Abstr. 1995, 124, 231951
  • 7b Seko S, and Furuya A. inventors; Jpn. Kokai Tokkyo Koho JP 11292808  A2.  ; Chem. Abstr. 1999, 131, 311907
  • 7c Miyai T. Onishi Y. Baba A. Tetrahedron  1999,  55:  1017 
  • 7d Kimura N. Tukamuku S. Bull. Chem. Soc. Jpn.  1991,  64:  2433 
  • For synthesis via chemoselective oxidation of alcohols see:
  • 8a Singh J. Sharma M. Chhibber M. Kaur J. Kad GL. Synth. Commun.  2000,  30:  3941 
  • 8b Zhang G. Li W. Cai K. Li Z. Huaxue Tongbao  1992,  4:  34 ; Chem. Abstr. 1992, 118, 123774
  • 8c Muzart J. Ajjou AN. Synth. Commun.  1992,  22:  1993 
  • For synthesis via chemoselective reduction see:
  • 9a Barrero AF. Alvarez-Manzaneda EJ. Chahboun R. Meneses R. Synlett  2000,  197 
  • 9b Isobe K. Mohri K. Sano H. Taga J. Tsuda Y. Chem. Pharm. Bull.  1986,  34:  3029 
  • For synthesis via acyl transfer reactions with phosphine oxides see:
  • 10a Wallace P. Warren S. J. Chem. Soc., Perkin Trans. 1  1988,  2971 
  • 10b Wallace P. Warren S. Tetrahedron Lett.  1985,  26:  5713 
  • For other methods see:
  • 11a Fuji K. Node M. Usami Y. Chem. Lett.  1986,  6:  961 
  • 11b Fuji K. Usami Y. Kiryu Y. Node M. Synthesis  1992,  852 
  • 11c Bretsch W. Reissig HU. Liebigs Ann. Chem.  1987,  3:  175 
  • 12a Niita M. Yi A. Kobayashi T. Bull. Chem. Soc. Jpn.  1985,  58:  991 
  • 12b Echavarren AM. Perez M. Castano AM. Cuerva JM. J. Org. Chem.  1994,  59:  4179 
  • 13a Taura Y. Tanaka M. Wu XM. Funakoshi K. Sakai K. Tetrahedron  1991,  47:  4879 
  • 13b O’Connor JM. Pu L. Rheingold AL. J. Am. Chem. Soc.  1990,  112:  6232 
  • 14a Pal M, Rao YK, Rajagopalan R, Misra P, Kumar PM, and Rao CS. inventors; World Patent WO  01/90097.  ; Chem. Abstr. 2002, 136, 5893
  • 14b Pattabiraman VR. Padakanti PS. Veeramaneni VR. Pal M. Yeleswarapu KR. Synlett  2002,  947 
  • 14c For a brief overview see: Scrip  2002,  112:  43 
  • 15 For a recent example, see: Shuki A. Keiko K. Jiro T. Tsunehisa H. Hatsuo Y. Masao K. J. Org. Chem.  2001,  66:  7919 
  • 16a Sonogashira K. Tohda Y. Hagihara N. Tetrahedron  1975,  16:  4467 
  • 16b Sonogashira K. In Comprehensive Organic Synthesis   Vol. 3:  Trost BM. Fleming I. Pergamon Press; New York: 1991.  p.521 
  • 16c Pal M. Kundu NG. J. Chem. Soc., Perkin Trans. 1  1996,  449 
  • For earlier reports on the occasional use of aryl bromide, see:
  • 17a Dieck HA. Heck RF. J. Organomet. Chem.  1975,  93:  259 
  • 17b Takahashi S. Kuroyama Y. Sonogashira K. Hagihara N. Synthesis  1980,  627 
  • 17c Austin WB. Bilow N. Kelleghan WJ. Lau KSY. J. Org. Chem.  1981,  46:  2280 
  • 17d Nguefack J.-F. Bolitt V. Sinou D. Tetrahedron Lett.  1996,  37:  5527 
  • 17e Villemin D. Goussu D. Heterocycles  1989,  29:  1255 
  • 17f De la Rosa MA. Velarde E. Guzman A. Synth. Commun.  1990,  20:  2059 
  • 17g Bleicher L. Cosford DP. Synlett  1995,  1115 
  • 17h Tischler A. Lanza TJ. Tetrahedron Lett.  1986,  27:  1653 
  • 17i Sakamoto T. Kondo Y. Yamanaka H. Heterocycles  1986,  24:  31 
  • 18a Krause N. Thorand S. J. Org. Chem.  1998,  63:  8551 
  • 18b Rosenblum SB. Huynh T. Afonso A. Davis HR. Tetrahedron  2000,  56:  5735 
  • 18c Brimble MA. Pavia GS. Stevenson RJ. Tetrahedron Lett.  2002,  43:  1735 
  • 19 Hundertmark T. Littke AF. Buchwald SL. Fu GC. Org. Lett.  2000,  2:  1729 
  • 21a Rossi R. Carpita A. Bigelli C. Tetrahedron Lett.  1985,  26:  523 
  • 21b Kundu NG. Pal M. Chowdhury C. J. Chem. Res., Synop.  1993,  432 
  • 21c Lei A. Srivastava M. Zhang X. J. Org. Chem.  2002,  67:  1969  and references therein.
  • 22a Fukuyama T. Shinmen M. Nishitani S. Sato M. Ryu I. Org. Lett.  2002,  4:  1691 
  • 22b Wu M.-J. Wei L.-M. Lin C.-F. Leou S.-P. Wei L.-L. Tetrahedron  2001,  57:  7839 
  • 24a

    Palladium metal deposited on the wall of the reaction flask perhaps did not participate in the hydration step.

  • 24b

    The alkyne was purified carefully using column chromatography in order to ensure the removal of the traces amount of Pd-catalyst.

  • 25a Tsuchimoto T. Joya T. Shirakawa E. Kawakami Y. Synlett  2000,  1777 ; and references therein
  • 25b Olah GA. Meidar D. Synthesis  1978,  671 
  • 25c Noyce DS. Matesich AM. Peterson E. J. Am. Chem. Soc.  1967,  89:  6225 
  • 25d Bosch E. Jeffries L. Tetrahedron Lett.  2001,  42:  8141 
  • 25e Yamanaka H. Shiraiwa M. Sakamoto T. Konno S. Chem. Pharm. Bull.  1981,  29:  3548 
  • 26 Imi K. Imai K. Utimoto K. Tetrahedron Lett.  1987,  28:  3127 
  • 27a For a discussion on generation of Pd(0) from Pd(II) salts in Et3N, see: Hegedus LS. Angew. Chem., Int. Ed. Engl.  1988,  27:  1113 
  • 27b See also: Jeevanandam A. Narkunan K. Ling Y.-C. J. Org. Chem.  2001,  66:  6014 
  • 27c For oxidation of Pd(0) to Pd(II) in the presence of oxygen, see: Kataoka H. Watanabe K. Miyazaki K. Tahara S. Ogu K. Matsuoka R. Goto K. Chem. Lett.  1990,  1705 
  • 27d See also: Kataoka H. Watanabe K. Goto K. Tetrahedron Lett.  1990,  31:  4181 
  • For hydration of alkynes controlled by neighboring group participation, see:
  • 28a Stork G. Borch R. J. Am. Chem. Soc.  1964,  86:  935 
  • 28b Hooz J. Layton RB. Can. J. Chem.  1970,  50:  1105 ; See also ref. 26
  • O-Formylation of alcohols using DMF in the presence of other reagents has been reported, see for example:
  • 29a Barluenga J. Campos PJ. Gonzalez-Nunez E. Asensio G. Synthesis  1985,  426 
  • 29b Luca LD. Giacomelli G. Porcheddu A. J. Org. Chem.  2002,  67:  5152 
  • 30a Commons TJ, Musial CL, and Christman S. inventors; WO 9857928  A1.  ; Chem. Abstr. 1998, 130, 81279
  • 30b Commons TJ, and Christman S. inventors; US 5977170  A.  ; Chem. Abstr. 1999, 131, 310456
  • 30c Tomita Y. Kabashima S. Okawara T. Yamasaki T. Furukawa M.
    J. Heterocycl. Chem.  1990,  27:  707 
  • 31a Miller NE. Hammett F. Saltissi S. Rao S. Van Zeller H. Coltart J. Lewis B. Br. Med. J.  1981,  282:  1741 
  • 31b Picardo M. Massey JB. Kuhn DE. Gotto AM. Gianturco SH. Pownall HJ. Arteriosclerosis  1986,  6:  434 ; Chem. Abstr. 1986, 105 188171
  • 32 Mewshaw RE. Silverman LS. Mathew RM. Kaiser C. Sherrill RG. Cheng M. Tiffany CW. Karbon EW. Bailey MA. Borosky SA. Ferkany JW. Abreu ME. J. Med. Chem.  1993,  36:  1488 
1

DRL Publication No. 251

20

Dimerization of terminal alkyne in the presence of copper(I) salt and amine base is a required process for
the in situ conversion of Pd(II) to the active catalyst Pd(0), see ref. 16a.

23

Typical procedure for the synthesis of 4-substituted 1-aryl-1-butanones: Preparation of Ia: To a solution of 4-bromoacetophenone (1 g, 5.03 mmol) in DMF (10mL) was added PdCl2(PPh3)2 (0.10 g, 0.15 mmol)and Et3N (4.06 g, 40.20 mmol) under nitrogen atmosphere. The mixture was stirred for 15 min at 25 C and then 3-butyn-1-ol (0.71 g, 10.05 mmol) was added very slowly via syringe to the stirred reaction mixture. The temperature of the mixture was increased slowly to 80 °C and stirring continued for 8 h. During the reaction, which was followed by TLC, precipitation of Et3N·HBr as crystalline solid was observed. After the complete consumption of the aryl bromide, the reaction mixture was cooled to r.t. and 20% HCl solution (100 mL) was added to it with vigorous stirring. After stirring for 8 h the mixture was diluted with water and EtOAc (150 mL), filtered through a small pad of celite (EtOAc). The organic layer was collected, washed with H2O (2 × 100 mL), dried over anhyd Na2SO4, filtered and concentrated under low vacuum. The residue thus obtained was purified by flash chromatography to afford the desired compound. Compound Ia was isolated in 59% yield as light yellow solid, mp 91-92 °C (hexane); IR (KBr): 3342 (br, OH), 1678 (C=O), 1502 cm-1; 1H NMR (200 MHz, CDCl3): δ = 8.04 (m, 4 H, ArH), 3.76 (t, J = 5.91 Hz, 2 H, CH 2OH), 3.16 (t, J = 6.98 Hz, 2 H, CH2CO), 2.65 (s, 3 H, CH3), 2.09-1.97 (m, 2 H, CH2), 1.65 (br s, D2O exchangeable, 1 H, OH); M (CI, I-butane): m/z (%) = 207 (100) [MH+]; 13C NMR: 199.89, 197.61, 139.94, 139.87, 128.37 (2 C), 128.13 (2 C), 61.71, 35.42, 26.74, 26.62.
Spectral data for 1d: pale yellow oil; IR (KBr): 3420 (br, OH), 1679 (C=O), 1607 cm-1; 1H NMR (200 MHz, CDCl3): δ = 7.90 (d, J = 7.81 Hz, 2 H, ArH), 7.29 (d, J = 7.80 Hz,
2 H, ArH), 3.76 (t, J = 5.86 Hz, 2 H, CH 2OH), 3.13 (t, J = 6.84 Hz, 2 H, CH2CO), 2.43 (s, 3 H, CH3), 2.09-1.97
(m, 2 H, CH2), 1.80 (br s, D2O exchangeable, 1 H, OH); MS (CI, I-butane): m/z (%) = 179 (100) [MH+]; 13C NMR: 199.12, 143.87, 134.27, 129.20 (2 C), 128.15 (2 C), 62.28, 35.21, 27.00, 21.64.
Spectral data for 1ff: IR (KBr): 1719 (OCHO), 1665 (C=O), 1588 cm-1; 1H NMR (200 MHz, CDCl3): δ = 8.07 (s, 1 H, CHO), 7.88 (d, J = 8.33 Hz, 2 H, ArH), 7.27 (d, J = 8.30 Hz, 2 H, ArH), 4.28 (t, J = 6.31 Hz, 2 H, CH2O), 3.05 (t, J = 7.13 Hz, 2 H, CH2CO), 2.53 (s, 3 H, SCH3), 2.16-2.09 (m, 2 H, CH2); MS (CI, I-butane): m/z (%) = 239 (100) [MH+].