References
1 DRL Publication No. 251
2a Fuji K, Noide M, Usami Y, and Takigawa T. inventors; Jpn.
Kokai Tokkyo Koho JP 62209073 A2.
; Chem. Abstr. 1987, 110, 135247
2b
Saladino R.
Crestini C.
Palamara AT.
Danti MC.
Manetti F.
Corelli F.
Garaci E.
Botta M.
J. Med. Chem.
2001,
44:
4554
2c
De Kimpe N.
Tehrani KA.
Stevens C.
De Cooman P.
Tetrahedron
1997,
53:
3693
3 Scott WJ, Popp MA, and Hartsough DS. inventors; WO 9743240 A1.
; Chem. Abstr. 1997, 128, 22719
4
Geronikaki AA.
Hadjipavlou-Litina DJ.
Arzneim.-Forsch.
1998,
48:
263
5 Matuz J, Csehi A, Bihari M, Barta S, Gizella SI, Szporny L, Ezer E, Saghy K, Domany G, and Hajos G. inventors; Hung.
Teljes HU 67625 A2.
; Chem. Abstr. 1995, 124, 55943
6 Giardina GAM, Grugni M, Graziani D, and Raveglia LF. inventors; WO
9852942 A1.
; Chem. Abstr.1998, 130, 24978
For synthesis via Friedel-Crafts
reaction see:
7a
Niu Z.
Liu C.
Shi L.
Huaxue
Shiji
1995,
17:
317 ; Chem. Abstr. 1995, 124, 231951
7b Seko S, and Furuya A. inventors; Jpn. Kokai Tokkyo Koho JP
11292808 A2.
; Chem. Abstr. 1999, 131, 311907
7c
Miyai T.
Onishi Y.
Baba A.
Tetrahedron
1999,
55:
1017
7d
Kimura N.
Tukamuku S.
Bull. Chem. Soc. Jpn.
1991,
64:
2433
For synthesis via chemoselective
oxidation of alcohols see:
8a
Singh J.
Sharma M.
Chhibber M.
Kaur J.
Kad GL.
Synth.
Commun.
2000,
30:
3941
8b
Zhang G.
Li W.
Cai K.
Li Z.
Huaxue Tongbao
1992,
4:
34 ; Chem. Abstr. 1992, 118, 123774
8c
Muzart J.
Ajjou AN.
Synth. Commun.
1992,
22:
1993
For synthesis via chemoselective
reduction see:
9a
Barrero AF.
Alvarez-Manzaneda EJ.
Chahboun R.
Meneses R.
Synlett
2000,
197
9b
Isobe K.
Mohri K.
Sano H.
Taga J.
Tsuda Y.
Chem. Pharm.
Bull.
1986,
34:
3029
For synthesis via acyl transfer
reactions with phosphine oxides see:
10a
Wallace P.
Warren S.
J. Chem. Soc., Perkin Trans.
1
1988,
2971
10b
Wallace P.
Warren S.
Tetrahedron Lett.
1985,
26:
5713
For other methods see:
11a
Fuji K.
Node M.
Usami Y.
Chem.
Lett.
1986,
6:
961
11b
Fuji K.
Usami Y.
Kiryu Y.
Node M.
Synthesis
1992,
852
11c
Bretsch W.
Reissig HU.
Liebigs Ann. Chem.
1987,
3:
175
12a
Niita M.
Yi A.
Kobayashi T.
Bull. Chem. Soc. Jpn.
1985,
58:
991
12b
Echavarren AM.
Perez M.
Castano AM.
Cuerva JM.
J.
Org. Chem.
1994,
59:
4179
13a
Taura Y.
Tanaka M.
Wu XM.
Funakoshi K.
Sakai K.
Tetrahedron
1991,
47:
4879
13b
O’Connor JM.
Pu L.
Rheingold AL.
J. Am. Chem. Soc.
1990,
112:
6232
14a Pal M, Rao YK, Rajagopalan R, Misra P, Kumar PM, and Rao CS. inventors; World
Patent WO 01/90097.
; Chem. Abstr. 2002, 136, 5893
14b
Pattabiraman VR.
Padakanti PS.
Veeramaneni VR.
Pal M.
Yeleswarapu KR.
Synlett
2002,
947
14c For a brief overview
see: Scrip
2002,
112:
43
15 For a recent example, see: Shuki A.
Keiko K.
Jiro T.
Tsunehisa H.
Hatsuo Y.
Masao K.
J. Org. Chem.
2001,
66:
7919
16a
Sonogashira K.
Tohda Y.
Hagihara N.
Tetrahedron
1975,
16:
4467
16b
Sonogashira K. In Comprehensive Organic
Synthesis
Vol. 3:
Trost BM.
Fleming I.
Pergamon
Press;
New York:
1991.
p.521
16c
Pal M.
Kundu NG.
J. Chem. Soc., Perkin
Trans. 1
1996,
449
For earlier reports on the occasional
use of aryl bromide, see:
17a
Dieck HA.
Heck RF.
J.
Organomet. Chem.
1975,
93:
259
17b
Takahashi S.
Kuroyama Y.
Sonogashira K.
Hagihara N.
Synthesis
1980,
627
17c
Austin WB.
Bilow N.
Kelleghan WJ.
Lau KSY.
J.
Org. Chem.
1981,
46:
2280
17d
Nguefack J.-F.
Bolitt V.
Sinou D.
Tetrahedron
Lett.
1996,
37:
5527
17e
Villemin D.
Goussu D.
Heterocycles
1989,
29:
1255
17f
De la Rosa MA.
Velarde E.
Guzman A.
Synth. Commun.
1990,
20:
2059
17g
Bleicher L.
Cosford DP.
Synlett
1995,
1115
17h
Tischler A.
Lanza TJ.
Tetrahedron Lett.
1986,
27:
1653
17i
Sakamoto T.
Kondo Y.
Yamanaka H.
Heterocycles
1986,
24:
31
18a
Krause N.
Thorand S.
J.
Org. Chem.
1998,
63:
8551
18b
Rosenblum SB.
Huynh T.
Afonso A.
Davis HR.
Tetrahedron
2000,
56:
5735
18c
Brimble MA.
Pavia GS.
Stevenson RJ.
Tetrahedron Lett.
2002,
43:
1735
19
Hundertmark T.
Littke AF.
Buchwald SL.
Fu GC.
Org.
Lett.
2000,
2:
1729
20 Dimerization of terminal alkyne in
the presence of copper(I) salt and amine base is a required process
for
the in situ conversion of Pd(II) to the active catalyst
Pd(0), see ref. 16a.
21a
Rossi R.
Carpita A.
Bigelli C.
Tetrahedron Lett.
1985,
26:
523
21b
Kundu NG.
Pal M.
Chowdhury C.
J. Chem. Res., Synop.
1993,
432
21c
Lei A.
Srivastava M.
Zhang X.
J.
Org. Chem.
2002,
67:
1969 and
references therein.
22a
Fukuyama T.
Shinmen M.
Nishitani S.
Sato M.
Ryu I.
Org. Lett.
2002,
4:
1691
22b
Wu M.-J.
Wei L.-M.
Lin C.-F.
Leou S.-P.
Wei L.-L.
Tetrahedron
2001,
57:
7839
23
Typical procedure
for the synthesis of 4-substituted 1-aryl-1-butanones: Preparation
of Ia: To a solution of 4-bromoacetophenone
(1 g, 5.03 mmol) in DMF (10mL) was added PdCl2(PPh3)2 (0.10
g, 0.15 mmol)and Et3N (4.06 g, 40.20 mmol) under nitrogen
atmosphere. The mixture was stirred for 15 min at 25 C
and then 3-butyn-1-ol (0.71 g, 10.05 mmol) was added very slowly
via syringe to the stirred reaction mixture. The temperature of
the mixture was increased slowly to 80 °C
and stirring continued for 8 h. During the reaction, which was followed
by TLC, precipitation of Et3N·HBr as crystalline
solid was observed. After the complete consumption of the aryl bromide,
the reaction mixture was cooled to r.t. and 20% HCl solution (100
mL) was added to it with vigorous stirring. After stirring for 8
h the mixture was diluted with water and EtOAc (150 mL), filtered
through a small pad of celite (EtOAc). The organic layer was collected,
washed with H2O (2 × 100 mL),
dried over anhyd Na2SO4, filtered and concentrated
under low vacuum. The residue thus obtained was purified by flash
chromatography to afford the desired compound. Compound Ia was isolated in 59% yield as
light yellow solid, mp 91-92 °C
(hexane); IR (KBr): 3342 (br, OH), 1678 (C=O), 1502 cm-1; 1H
NMR (200 MHz, CDCl3): δ = 8.04
(m, 4 H, ArH), 3.76 (t, J = 5.91
Hz, 2 H, CH
2OH), 3.16 (t, J = 6.98 Hz,
2 H, CH2CO), 2.65 (s, 3 H, CH3), 2.09-1.97
(m, 2 H, CH2), 1.65 (br s, D2O exchangeable,
1 H, OH); M (CI, I-butane): m/z (%) = 207
(100) [MH+]; 13C
NMR: 199.89, 197.61, 139.94, 139.87, 128.37 (2 C), 128.13 (2 C), 61.71,
35.42, 26.74, 26.62.
Spectral data for 1d:
pale yellow oil; IR (KBr): 3420 (br, OH), 1679 (C=O), 1607
cm-1; 1H NMR (200
MHz, CDCl3): δ = 7.90
(d, J = 7.81
Hz, 2 H, ArH), 7.29 (d, J = 7.80
Hz,
2 H, ArH), 3.76 (t, J = 5.86
Hz, 2 H, CH
2OH), 3.13 (t, J = 6.84 Hz,
2 H, CH2CO), 2.43 (s, 3 H, CH3), 2.09-1.97
(m,
2 H, CH2), 1.80 (br s, D2O exchangeable, 1
H, OH); MS (CI, I-butane): m/z (%) = 179
(100) [MH+]; 13C
NMR: 199.12, 143.87, 134.27, 129.20 (2 C), 128.15 (2 C), 62.28, 35.21,
27.00, 21.64.
Spectral data for 1ff:
IR (KBr): 1719 (OCHO), 1665 (C=O), 1588 cm-1; 1H
NMR (200 MHz, CDCl3): δ = 8.07 (s,
1 H, CHO), 7.88 (d, J = 8.33
Hz, 2 H, ArH), 7.27 (d, J = 8.30
Hz, 2 H, ArH), 4.28 (t, J = 6.31
Hz, 2 H, CH2O), 3.05 (t, J = 7.13 Hz,
2 H, CH2CO), 2.53 (s, 3 H, SCH3), 2.16-2.09
(m, 2 H, CH2); MS (CI, I-butane): m/z (%) = 239
(100) [MH+].
24a Palladium
metal deposited on the wall of the reaction flask perhaps did not
participate in the hydration step.
24b The alkyne was purified
carefully using column chromatography in order to ensure the removal
of the traces amount of Pd-catalyst.
25a
Tsuchimoto T.
Joya T.
Shirakawa E.
Kawakami Y.
Synlett
2000,
1777 ; and references therein
25b
Olah GA.
Meidar D.
Synthesis
1978,
671
25c
Noyce DS.
Matesich AM.
Peterson E.
J. Am. Chem. Soc.
1967,
89:
6225
25d
Bosch E.
Jeffries L.
Tetrahedron Lett.
2001,
42:
8141
25e
Yamanaka H.
Shiraiwa M.
Sakamoto T.
Konno S.
Chem. Pharm. Bull.
1981,
29:
3548
26
Imi K.
Imai K.
Utimoto K.
Tetrahedron
Lett.
1987,
28:
3127
27a For
a discussion on generation of Pd(0) from Pd(II) salts in Et3N,
see: Hegedus LS.
Angew. Chem.,
Int. Ed. Engl.
1988,
27:
1113
27b See also: Jeevanandam A.
Narkunan K.
Ling Y.-C.
J. Org. Chem.
2001,
66:
6014
27c For oxidation of Pd(0)
to Pd(II) in the presence of oxygen, see: Kataoka H.
Watanabe K.
Miyazaki K.
Tahara S.
Ogu K.
Matsuoka R.
Goto K.
Chem. Lett.
1990,
1705
27d See also: Kataoka H.
Watanabe K.
Goto K.
Tetrahedron Lett.
1990,
31:
4181
For hydration of alkynes controlled
by neighboring group participation, see:
28a
Stork G.
Borch R.
J. Am. Chem. Soc.
1964,
86:
935
28b
Hooz J.
Layton RB.
Can. J. Chem.
1970,
50:
1105 ; See also ref. 26
O-Formylation of alcohols using
DMF in the presence of other reagents has been reported, see for
example:
29a
Barluenga J.
Campos PJ.
Gonzalez-Nunez E.
Asensio G.
Synthesis
1985,
426
29b
Luca LD.
Giacomelli G.
Porcheddu A.
J. Org. Chem.
2002,
67:
5152
30a Commons TJ, Musial CL, and Christman S. inventors; WO 9857928 A1.
; Chem. Abstr. 1998, 130, 81279
30b Commons TJ, and Christman S. inventors; US 5977170 A.
; Chem. Abstr. 1999, 131, 310456
30c
Tomita Y.
Kabashima S.
Okawara T.
Yamasaki T.
Furukawa M.
J.
Heterocycl. Chem.
1990,
27:
707
31a
Miller NE.
Hammett F.
Saltissi S.
Rao S.
Van Zeller H.
Coltart J.
Lewis B.
Br. Med. J.
1981,
282:
1741
31b
Picardo M.
Massey JB.
Kuhn DE.
Gotto AM.
Gianturco SH.
Pownall HJ.
Arteriosclerosis
1986,
6:
434 ; Chem. Abstr. 1986, 105 188171
32
Mewshaw RE.
Silverman LS.
Mathew RM.
Kaiser C.
Sherrill RG.
Cheng M.
Tiffany CW.
Karbon EW.
Bailey MA.
Borosky SA.
Ferkany JW.
Abreu ME.
J. Med. Chem.
1993,
36:
1488