Subscribe to RSS
DOI: 10.1055/s-2002-35589
Tin-free Radical Cyanation of Alkyl Iodides and Alkyl Phenyl Tellurides
Publication History
Publication Date:
20 November 2002 (online)
Abstract
As a result of much faster phenyl telluride group transfer relative to the corresponding iodine atom transfer, tin-free radical cyanation of alkyl phenyl tellurides has been achieved with p-toluenesufonyl cyanide and methyl allyl sulfone in the presence of V-40 as initiator.
Key words
radicals - tin-free - cyanation - alkyl phenyl tellurides - sulfones
- 1
Baguley PA.Walton JC. Angew. Chem. Int. Ed. 1998, 37: 3072 -
2a
Gerigke U.Gerlach M.Neumann WP.Vieler R.Weintritt V. Synthesis 1990, 448 -
2b
Gerlach M.Jordens F.Kuhn H.Neumann WP.Peterseim M. J. Org. Chem. 1991, 56: 5971 -
2c
Dumartin G.Ruel G.Kharboutli J.Delmond B.Connil M.-F.Jousseaume B.Pereyre M. Synlett 1994, 952 -
2d
Chatgilialoglu C.Griller D.Lesage M. J. Org. Chem. 1988, 53: 3641 -
2e
Giese B.Kopping B.Chatgilialoglu C. Tetrahedron Lett. 1989, 30: 681 -
2f
Ballestri M.Chatgilialoglu C. J. Org. Chem. 1991, 56: 678 -
2g
Chatgilialoglu C. Acc. Chem. Res. 1992, 25: 188 -
2h
Chatgilialoglu C. Chem. Rev. 1995, 95: 1229 -
2i
Brumwell JE.Simpkins NS.Terrett NK. Tetrahedron Lett. 1993, 34: 1215 -
3a
Quiclet-Sire B.Zard SZ. J. Am. Chem. Soc. 1996, 118: 1209 -
3b
Guyader FL.Quiclet-Sire B.Seguin S.Zard SZ. J. Am. Chem. Soc. 1997, 119: 7410 -
3c
Zard SZ. Angew. Chem., Int. Ed. Engl. 1997, 36: 672 -
4a
Xiang J.Fuchs PL. J. Am. Chem. Soc. 1996, 118: 11986 -
4b
Bertrand F.Quielet-Sire B.Zard SZ. Angew. Chem. Int. Ed. 1999, 38: 1943 - 5
Kim S.Song H.-J.Choi T.-L.Yoon J.-Y. Angew. Chem. Int. Ed. 2001, 40: 2524 -
6a
Kim S.Lim CJ.Song S.-E.Kang H.-Y. Synlett 2001, 688 -
6b
Kim S.Kim N.Chung W.-J.Cho CH. Synlett 2001, 937 -
6c
Kim S.Lim CJ.Song S.-E.Kang H.-Y. Chem. Commun. 2001, 1410 -
7a
Barton DHR.Jaszberenyi JCs.Theodorakis EA. Tetrahedron Lett. 1991, 32: 3321 -
7b
Barton DHR.Jaszberenyi JCs.Theodorakis EA. Tetrahedron 1992, 48: 2613 - 8
Fang J.-M.Chen M.-Y. Tetrahedron Lett. 1987, 28: 2853 -
10a
Horowitz A.Rajbenbach LA. J. Am. Chem. Soc. 1975, 97: 10 -
10b
Chatgilialoglu C. In The Chemistry of Sulfones and SulfoxidesPatai S.Rappoport Z.Stirling CJM. Wiley; Chichester: 1988. p.1089-1113 -
10c
Bertrand M. Org. Prep. Proc. Int. 1994, 26: 257 - 11 According to our competition experiment
between allyl phenyl sulfone and allyltributyltin, the addition
of primary alkyl radicals to allyltributyltin is approximately five
times faster than that onto allyl phenyl sulfone. The rate constant for
the former reaction was known to be in the range of 104-105 M-1s-1:
Curran DP.van Elburg PA.Giese B.Giles S. Tetrahedron Lett. 1990, 31: 2861 - 12
Kim S.Lee IY. Tetrahedron Lett. 1998, 39: 1587
References
Typical procedure for Equation
[2]
: The degassed solution
of ethyl 4-iodobutyrate (4, 48 mg, 0.20
mmol), p-toluene-sulfonyl cyanide (2, 46 mg, 0.24 mmol) and hexamethylditin (79
mg, 0.24 mmol) in benzene (1 mL) was irradiated under 300 nm UV
lamp at room temperature for 2 h. The solvent was evaporated under
reduced pressure and the residue was chromatographed on a silica
gel column (n-hexane/ethyl acetate = 1:5)
to yield ethyl 4-cyanobutyrate (5, 25 mg,
0.18 mmol, 88% yield). 1H NMR (CDCl3,
300 MHz) δ 1.21 (t,
J = 7.1
Hz, 3 H), 1.87-1.97 (m, 2 H), 2.38-2.44 (m, 4
H), 4.09 (q, J = 7.1 Hz, 2 H); 13C
NMR (CDCl3, 100 MHz) δ 14.0, 16.4, 20.6, 32.3,
60.6, 118.9, 171.8; IR (NaCl) 2994, 2950, 2880, 2365, 2344, 2252,
1734, 1458, 1378, 1222, 1198, 1028 cm-1.
Typical procedure for Equation
[6]
: The degassed solution of 4-phenoxybutyl
phenyl telluride (13, 65 mg, 0.18 mmol), p-toluenesulfonyl cyanide (2, 70 mg, 0.37 mmol), methyl allyl sulfone
(6, 44 mg, 0.37 mmol) and V-40 (9 mg, 0.037
mmol) in t-butylbenzene (1 mL) was stirred
at 140 °C under N2 for 12 h. The solvent was
evaporated under reduced pressure and the residue was chromatographed
on a silica gel column (n-hexane/ethyl
acetate = 1:10) to yield 5-phenoxy pentanenitrile (29 mg,
0.16 mmol, 89% yield). 1H NMR (CDCl3,
300 MHz) δ 1.85-1.95 (m, 4 H), 2.41-2.45
(t,
J = 6.7 Hz, 2
H), 3.98-4.00 (t, J = 5.7
Hz, 2 H), 6.85-6.92 (d, J = 5.6
Hz, 2 H), 6.93-6.95 (t, J = 7.3
Hz, 1 H), 7.23-7.28 (m, 2 H); 13C
NMR (CDCl3, 100 MHz) δ 16.6, 22.0, 27.8, 66.0,
113.9, 119.0, 120.4, 129.0, 158.2; IR (NaCl) 2946, 2877, 2362, 2343,
2247, 1600, 1498, 1245 cm-1.