References
1
Baguley PA.
Walton JC.
Angew. Chem. Int.
Ed.
1998,
37:
3072
2a
Gerigke U.
Gerlach M.
Neumann WP.
Vieler R.
Weintritt V.
Synthesis
1990,
448
2b
Gerlach M.
Jordens F.
Kuhn H.
Neumann WP.
Peterseim M.
J.
Org. Chem.
1991,
56:
5971
2c
Dumartin G.
Ruel G.
Kharboutli J.
Delmond B.
Connil M.-F.
Jousseaume B.
Pereyre M.
Synlett
1994,
952
2d
Chatgilialoglu C.
Griller D.
Lesage M.
J. Org. Chem.
1988,
53:
3641
2e
Giese B.
Kopping B.
Chatgilialoglu C.
Tetrahedron
Lett.
1989,
30:
681
2f
Ballestri M.
Chatgilialoglu C.
J. Org. Chem.
1991,
56:
678
2g
Chatgilialoglu C.
Acc. Chem. Res.
1992,
25:
188
2h
Chatgilialoglu C.
Chem. Rev.
1995,
95:
1229
2i
Brumwell JE.
Simpkins NS.
Terrett NK.
Tetrahedron Lett.
1993,
34:
1215
3a
Quiclet-Sire B.
Zard SZ.
J.
Am. Chem. Soc.
1996,
118:
1209
3b
Guyader FL.
Quiclet-Sire B.
Seguin S.
Zard SZ.
J.
Am. Chem. Soc.
1997,
119:
7410
3c
Zard SZ.
Angew. Chem., Int. Ed. Engl.
1997,
36:
672
4a
Xiang J.
Fuchs PL.
J.
Am. Chem. Soc.
1996,
118:
11986
4b
Bertrand F.
Quielet-Sire B.
Zard SZ.
Angew. Chem.
Int. Ed.
1999,
38:
1943
5
Kim S.
Song H.-J.
Choi T.-L.
Yoon J.-Y.
Angew. Chem. Int. Ed.
2001,
40:
2524
6a
Kim S.
Lim CJ.
Song S.-E.
Kang H.-Y.
Synlett
2001,
688
6b
Kim S.
Kim N.
Chung W.-J.
Cho CH.
Synlett
2001,
937
6c
Kim S.
Lim CJ.
Song S.-E.
Kang H.-Y.
Chem. Commun.
2001,
1410
7a
Barton DHR.
Jaszberenyi JCs.
Theodorakis EA.
Tetrahedron
Lett.
1991,
32:
3321
7b
Barton DHR.
Jaszberenyi JCs.
Theodorakis EA.
Tetrahedron
1992,
48:
2613
8
Fang J.-M.
Chen M.-Y.
Tetrahedron Lett.
1987,
28:
2853
9 Typical procedure for Equation
[2]
: The degassed solution
of ethyl 4-iodobutyrate (4, 48 mg, 0.20
mmol), p-toluene-sulfonyl cyanide (2, 46 mg, 0.24 mmol) and hexamethylditin (79
mg, 0.24 mmol) in benzene (1 mL) was irradiated under 300 nm UV
lamp at room temperature for 2 h. The solvent was evaporated under
reduced pressure and the residue was chromatographed on a silica
gel column (n-hexane/ethyl acetate = 1:5)
to yield ethyl 4-cyanobutyrate (5, 25 mg,
0.18 mmol, 88% yield). 1H NMR (CDCl3,
300 MHz) δ 1.21 (t,
J = 7.1
Hz, 3 H), 1.87-1.97 (m, 2 H), 2.38-2.44 (m, 4
H), 4.09 (q, J = 7.1 Hz, 2 H); 13C
NMR (CDCl3, 100 MHz) δ 14.0, 16.4, 20.6, 32.3,
60.6, 118.9, 171.8; IR (NaCl) 2994, 2950, 2880, 2365, 2344, 2252,
1734, 1458, 1378, 1222, 1198, 1028 cm-1.
10a
Horowitz A.
Rajbenbach LA.
J.
Am. Chem. Soc.
1975,
97:
10
10b
Chatgilialoglu C. In
The Chemistry of
Sulfones and Sulfoxides
Patai S.
Rappoport Z.
Stirling CJM.
Wiley;
Chichester:
1988.
p.1089-1113
10c
Bertrand M.
Org.
Prep. Proc. Int.
1994,
26:
257
11 According to our competition experiment
between allyl phenyl sulfone and allyltributyltin, the addition
of primary alkyl radicals to allyltributyltin is approximately five
times faster than that onto allyl phenyl sulfone. The rate constant for
the former reaction was known to be in the range of 104-105 M-1s-1: Curran DP.
van Elburg PA.
Giese B.
Giles S.
Tetrahedron
Lett.
1990,
31:
2861
12
Kim S.
Lee IY.
Tetrahedron Lett.
1998,
39:
1587
13 Typical procedure for Equation
[6]
: The degassed solution of 4-phenoxybutyl
phenyl telluride (13, 65 mg, 0.18 mmol), p-toluenesulfonyl cyanide (2, 70 mg, 0.37 mmol), methyl allyl sulfone
(6, 44 mg, 0.37 mmol) and V-40 (9 mg, 0.037
mmol) in t-butylbenzene (1 mL) was stirred
at 140 °C under N2 for 12 h. The solvent was
evaporated under reduced pressure and the residue was chromatographed
on a silica gel column (n-hexane/ethyl
acetate = 1:10) to yield 5-phenoxy pentanenitrile (29 mg,
0.16 mmol, 89% yield). 1H NMR (CDCl3,
300 MHz) δ 1.85-1.95 (m, 4 H), 2.41-2.45
(t,
J = 6.7 Hz, 2
H), 3.98-4.00 (t, J = 5.7
Hz, 2 H), 6.85-6.92 (d, J = 5.6
Hz, 2 H), 6.93-6.95 (t, J = 7.3
Hz, 1 H), 7.23-7.28 (m, 2 H); 13C
NMR (CDCl3, 100 MHz) δ 16.6, 22.0, 27.8, 66.0,
113.9, 119.0, 120.4, 129.0, 158.2; IR (NaCl) 2946, 2877, 2362, 2343,
2247, 1600, 1498, 1245 cm-1.