Subscribe to RSS
DOI: 10.1055/s-2003-36224
1,1,2,2-Tetraphenyl-1,2-ethanediol: A New Protecting Group for the Synthesis of Cyclopropylboronic Esters
Publication History
Publication Date:
18 December 2002 (online)

Abstract
While enantiomerically pure auxiliaries and protecting groups for boronic acids are well established, much less attention has been paid to achiral derivatives. The commercially available benzpinacol (9) proved to yield highly stable boronic esters. The new derivatives contributed to the substrate-controlled diastereoselective synthesis of cyclopropylboronic esters 20, 22, and 25.
Key words
asymmetric synthesis - diols - cyclopropanes - boron - protecting groups
- 1
Matteson DS. Stereodirected Synthesis with Organoboranes Springer-Verlag; Heidelberg: 1995. - 2
Morin C. Tetrahedron 1994, 50: 12521 - 3
Pelter A.Smith K.Brown HC. Borane Reagents Academic Press; London: 1988. - 4
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457 - 5
Beletskaya I.Pelter A. Tetrahedron 1997, 53: 4957 - 6
Matteson DS. Tetrahedron 1998, 54: 10555 - 7
Suzuki A. J. Organomet. Chem. 1999, 576: 147 - 8
Bowie RA.Musgrave OC. J. Chem. Soc. 1963, 3945 - 9
Matteson DS.Ray R. J. Am. Chem. Soc. 1980, 102: 7590 - 10
Matteson DS.Ray R.Rocks RR.Tsai DJ. Organometallics 1983, 2: 1536 - 11
Ditrich K.Bube T.Stürmer R.Hoffmann RW. Angew. Chem., Int. Ed. Engl. 1986, 25: 1028 ; Angew. Chem. 1986, 98, 1016 - 12
Hoffmann RW.Ditrich K.Köster G.Stürmer R. Chem. Ber. 1989, 122: 1783 - 13
Devant R.Mahler U.Braun M. Chem. Ber. 1988, 121: 397 - 14
Luithle JEA.Pietruszka J.Witt A. Chem. Commun. 1998, 2651 - 15
Luithle JEA.Pietruszka J. Liebigs Ann. Recl. 1997, 2297 - 16
Luithle JEA.Pietruszka J. J. Org. Chem. 1999, 64: 8287 - 17
Luithle JEA.Pietruszka J. Eur. J. Org. Chem. 2000, 2557 - 18
Luithle JEA.Pietruszka J. J. Org. Chem. 2000, 65: 9194 - 19
Tucker CE.Davidson J.Knochel P. J. Org. Chem. 1992, 57: 3482 - 20
Pietruszka J.Witt A. J. Chem. Soc., Perkin Trans. 1 2000, 4293 - 21
Huskens J.Reetz MT. Eur. J. Org. Chem. 1999, 1775 - 22
Furukawa J.Kawabata N.Nishimura J. Tetrahedron 1968, 24: 53 - 23
Denmark SE.O’Connor SP. J. Org. Chem. 1997, 62: 3390 - 24
Song Y.-L. Synlett 2000, 1210 - 25
Zhang A.Kan Y.Zhao G.-L.Jiang B. Tetrahedron 2000, 56: 965 - 26
Hoffmann RW.Dresely S. Synthesis 1988, 103 - 27
Kamabuchi A.Moriya T.Miyaura N.Suzuki A. Synth. Commun. 1993, 23: 2851 - 29
Crisp GT.Jiang Y.-L.Pullman PJ.De Savi C. Tetrahedron 1997, 53: 17489 - 30
Baba Y.Saha G.Nakao S.Iwata C.Tanaka T.Ibuka T.Ohishi H.Takemoto Y. J. Org. Chem. 2001, 66: 81
References
Experimental Procedure
for the Synthesis of Alkenylboronic Ester 17: Under an atmosphere
of dry nitrogen BH3·SMe2 complex
(0.5 mL, 5 mmol) in THF (5 mL) was cooled to 0 °C.
After addition of α-pinene (1.6 mL, 10 mmol) the reaction
mixture was stirred for 1 h at 0 °C and 2 h at
r.t. A colorless precipitate formed. After the mixture was cooled
to -35 °C, the alkyne (650 mg, 5.2 mmol)
was slowly added. The mixture was stirred at this temperature for 15
min, then allowed to warm to r.t. and continued to stir for 3 h.
Acetaldehyde (5.5 mL, 100 mmol) was carefully added at 0 °C.
The solution was refluxed over night and the excess aldehyde removed
under reduced pressure. The residue was dissolved in THF (5 mL)
and benzpinacol(9) (1.83 g, 5.0 mmol) was
added. The solution was refluxed until TLC indicated no further
transformation. The solvent was removed under reduced pressure and
the crude product subjected to flash-column chromatography on silica
gel, eluting with petroleum ether/diethyl ether (9:1).
A colorless solid was isolated, yield: 1.07 g (2.1 mmol, 43%). Representative
data: 17: [α]D
20 = +30.9
(c 0.97, CHCl3), mp 71-74 °C.
C33H31BO4 (502.41): Calcd C, 78.89;
H, 6.22. Found C, 78.83; H, 6.33. 1H NMR (500
MHz, CDCl3): δ(ppm) = 3.74
(dd, 2
J
5
′′
a,5
′′
b = 9.3 Hz, 3
J
4
′′
,5
′′
a = 7.8 Hz, 1 H, 5′′-Ha),
4.21 (dd, 2
J
5
′′
a,5
′′
b = 9.3 Hz, 3
J
4
′′
,5
′′
b = 6.4 Hz, 1 H, 5′′-Hb),
4.69 (ddd, 3
J
4
′′
,5
′′
a = 7.8 Hz, 3
J
4
′′
,5
′′
b = 6.4 Hz, 3
J
2
′
,4
′′ = 6.3 Hz, 1 H, 4′′-H),
6.15 (d, 3
J
1
′
,2
′ = 18.0 Hz, 1 H, 1′-H),
6.95 (dd, 3
J
1
′
,2
′ = 18.0 Hz, 3
J
2
′
,4
′′ = 6.3 Hz, 2′-H). 13C NMR
(125 MHz, CDCl3): δ(ppm) = 69.1
(C-5′′), 78.1 (C-4′′), 151.5
(C-2′). 21: [α]20
D = +7.7
(c 0.91, CHCl3), mp
49-52 °C.
C36H41BO4Si (576.60): Calcd C,
74.99; H, 7.17. Found C, 74.82; H, 7.26. 1H
NMR (500 MHz, CDCl3): δ(ppm) = 3.56
(dd, 2
J
4
′
a,4
′
b = 10.0 Hz, 3
J
3
′
,4
′
a = 7.2 Hz, 1 H, 4′-Ha),
3.79 (dd, 2
J
4
′
a,4
′
b = 10.0 Hz, 3
J
3
′
,4
′
b = 3.6 Hz, 1 H, 4′-Hb),
4.37 (mc, 1 H, 3′-H), 6.15 (dd, 3
J
1
′
,2
′ = 18.0 Hz, 4
J
1
′
,3
′ = 1.7 Hz, 1 H, 1′-H),
6.95 (dd, 3
J
1
′
,2
′ = 18.0 Hz, 3
J
2
′
,3
′ = 4.6 Hz, 2′-H). 13C
NMR (125 MHz, CDCl3): δ(ppm) = 66.6
(C-4′), 73.7 (C-3′), 96.0 (CPh2),
ca. 118 (br, C-1′), 153.1 (C-2′). 22: [α]D
20 = -70.4
(c 1.05, CHCl3), mp 66-70 °C.
C37H43BO4Si (590.63): Calcd C,
75.24; H, 7.34. Found C, 75.14; H, 7.45. 1H
NMR (500 MHz, CDCl3): δ(ppm) = 0.23
(mc, 1 H, 1′-H), 0.95 (mc, 1 H, 3′-Hcis),
1.08 (ddd, 3
J
2
′
,3
′
-
trans
= 7.8
Hz, 3
J
1
′
,3
′
-
trans
= 6.2
Hz,
3
J
3
′
-cis,3
′
-
trans
= 3.6
Hz, 1 H, 3′-H
trans
),
1.38 (mc, 1 H, 2′-H), 2.55 (d, 3
J
OH,1
′′ = 3.5
Hz, 1 H, OH), 3.16 (mc, 1
H, 1′′-H), 3.43 (dd, 2
J
2
′′
a,2
′′
b = 9.9 Hz, 3
J
1
′′
,2
′′
a = 7.4 Hz, 1 H, 2′′-Ha), 3.80
(dd, 2
J
2
′′
a,2
′′
b = 9.9 Hz, 3
J
1
′′
,2
′′
b = 3.4 Hz, 1 H, 2′′-Hb).
13C
NMR (125 MHz, CDCl3): δ(ppm) = 9.1
(C-3′), 20.4
(C-2′), 67.0 (C-2′′),
75.9 (C-1′′), 95.8 (CPh2).