Subscribe to RSS
DOI: 10.1055/s-2003-36227
A Short Enantioselective Synthesis of Naturally Occurring Muscarine Alkaloids from 1,4-Hexadiene
Publication History
Publication Date:
18 December 2002 (online)

Abstract
Short enantioselective syntheses of naturally occurring muscarine alkaloids 1a-d starting from (Z)-1,4-hexadiene (2) and its E-configured isomer 4 have been devised. Key transformations in both sequences were (i) asymmetric dihydroxylation of 1,4-hexadienes 2 and 4 and (ii) application of a novel diastereoselective bromoetherification of (2S,3R)-5-hexene-2,3-diol (3) (40% ee) and (2S,3S)-5-hexene-2,3-diol (5) (90% ee) which was initiated by a vanadium(V)-catalyzed oxidation of bromide using tert-butyl hydroperoxide as primary oxidant.
Key words
bromide - cyclization - muscarine alkaloids - oxidation - tetrahydrofuran - vanadium
-
1a
Wang P.-C.Joullié MM. In The Alkaloids Vol. 23:Brossi A. Academic Press; New York: 1984. p.327-380 -
1b
Lewis JR. Nat. Prod. Rep. 1998, 15: 417 -
1c
Lewis JR. Nat. Prod. Rep. 1998, 15: 371 -
2a
Eugster CH.Waser PG. Experientia 1954, 10: 298 -
2b
Eugster CH. Naturwissenschaften 1968, 55: 305 -
3a
Bollinger H.Eugster CH. Helv. Chim. Acta 1971, 54: 2704 -
3b
Eugster CH. Helv. Chim. Acta 1956, 39: 1002 - 4
Kögl F.Salemink CA.Schouten H.Jellinek F. Recl. Trav. Chim. Pays Bas 1957, 76: 109 - 5
Nitta K.Stadelmann RJ.Eugster CH. Helv. Chim. Acta 1977, 60: 1747 -
6a
Bollinger H.Eugster CH. Helv. Chim. Acta 1971, 54: 1332 -
6b
Catalformo P.Eugster CH. Helv. Chim. Acta 1970, 53: 848 -
6c
List HP.Müller H. Arch. Pharm. (Weinheim, Ger.) 1959, 292: 777 -
6d
Eugster CH.Müller G. Helv. Chim. Acta 1959, 42: 1189 - 7
Waser PG. Pharmacol. Res. 1961, 13: 465 - 8
Wilkinson S. Quart. Rev. Chem. Soc. 1961, 15: 153 - 9
Eugster CH.Schleusener E. Helv. Chim. Acta 1969, 52: 708 -
10a
Kang KH.Cha MY.Pae NA.Choi KI.Cho YS.Koh HY.Chung BY. Tetrahedron Lett. 2000, 41: 8137 -
10b
Takano S.Iwabuchi Y.Ogasawara K. J. Chem. Soc., Chem. Commun. 1989, 1371 -
10c
Mulzer J.Angermann A.Münch W.Schlichthörl G.Hentzschel A. Liebigs Ann. Chem. 1987, 7 -
10d
Amouroux R.Gerin B.Chastrette M. Tetrahedron 1985, 41: 5321 -
10e
Still WC.Schneider JA. J. Org. Chem. 1980, 45: 3375 -
10f
Hardegger E.Lohse F. Helv. Chim. Acta 1957, 40: 244 -
11a
Norrild JC.Pedersen C. Synthesis 1997, 1128 -
11b
Popsavin V.Beric O.Csanádi J.Popsavin M.Miljkovic D. J. Serb. Chem. Soc. 1995, 60: 625 -
11c
Chmielewski M.Guzik P.Hintze B.Daniewski WM. J. Org. Chem. 1985, 50: 5360 -
11d
Fronza G.Fuganti C.Grasselli P. Tetrahedron Lett. 1978, 3941 -
11e
Corrodi H.Hardegger E.Kögl F. Helv. Chim. Acta 1957, 40: 2454 -
12a
Angle SR.El-Said NA. J. Am. Chem. Soc. 2002, 124: 3608 -
12b
Popsavin V.Beric O.Popsavin M.Radic L.Csanádi J.Cirin-Novta V. Tetrahedron 2000, 56: 5929 -
12c
Popsavin V.Beric O.Popsavin M.Lajsic S.Miljkovic D. Carbohydr. Lett. 1998, 3: 1 - 13
Popsavin V.Beric O.Popsavin M.Csanádi J.Miljkovic D. Carbohydr. Res. 1995, 269: 343 - 14
De Amici M.Dallanoce C.De Micheli C.Grana E.Barbieri A.Ladinsky H.Schiavi G.Zonta F. J. Med. Chem. 1992, 35: 1915 ; and references cited therein -
15a From l-arabinose:
Hardegger E.Lohse F. Helv. Chim. Acta 1957, 40: 2383 -
15b From l-rhamnose:
Mantell SJ.Fleet GWJ.Brown D. J. Chem. Soc., Perkin Trans. 1 1992, 3023 -
15c From 2-deoxy-l-ribose:
Pochet S.Huynh-Dinh T. J. Org. Chem. 1982, 47: 193 -
15d From d-mannose:
Mubarak AM.Brown DM. J. Chem. Soc., Perkin Trans. 1 1982, 809 -
15e
Hardegger E.Furter H.Kiss J. Helv. Chim. Acta 1958, 41: 2401 -
15f From d-glucosamine:
Cox HC.Hardegger E.Kögl F.Liechti P.Lohse F.Salemink CA. Helv. Chim. Acta 1958, 41: 229 - For examples:
-
16a
Knight DW.Shaw D.Fenton G. Synlett 1994, 295 -
16b
Chan TH.Li CJ. Can. J. Chem. 1992, 70: 2726 -
16c
Amouroux R.Gerin B.Chastrette M. Tetrahedron Lett. 1982, 23: 4341 -
18a AD-mix-α®:
K2[OsO2(OH)4],
K2CO3, K3[Fe(CN)6],
1,4-bis(9-O-dihydroquinyl)phthalazine;
AD-mix-β®: K2[OsO2(OH)4],
K2CO3, K3[Fe(CN)6],
1,4-bis(9-O-dihydroquinidyl)phthalazine.
For a review on the AD reaction, see:
Kolb HC.VanNieuwenhze MS.Sharpless KB. Chem. Rev. 1994, 94: 2483 -
18b For enantioselective dihydroxylations
of polyenes see:
Becker H.Soler MA.Sharpless KB. Tetrahedron 1995, 51: 1345 - 19
Paquette LA.Mitzel TM. J. Org. Chem. 1996, 61: 8799 - 21
Wang L.Sharpless KB. J. Am. Chem. Soc. 1992, 114: 7568 - 22
Xu D.Crispino GA.Sharpless KB. J. Am. Chem. Soc. 1992, 114: 7570 - 23
Hale KJ.Lennon JA.Manaviazar S.Javaid MH.Hobbs CJ. Tetrahedron Lett. 1995, 36: 1359 - 24
Sharpless KB.Amberg W.Bennani YL.Crispino GA.Hartung J.Jeong K.-S.Kwong H.-L.Morikawa K.Whang Z.-M.Xu D.Zhang X.-L. J. Org. Chem. 1992, 57: 2768 - 26
Mimoun H.Mignard M.Brechot P.Saussine L. J. Am. Chem. Soc. 1986, 108: 3711 - 27
Hartung J.Schmidt P. Synlett 2000, 367 - 28 Preparation of tetrahydrofurans 6a and 6b (from 3) and 6c and 6d (from 5) was
performed according to the following general procedure: A solution
of (2S,3S)-hexene-2,3-diol(5) (116 mg, 1.00 mmol), [VOL(EtO)(EtOH)] (L = N-(2-hydroxyphenyl)salicylideneimine
dianion) (36.9 mg, 0.10 mmol),25-27 pyridinium
hydrobromide (176 mg, 1.10 mmol) and tert-butyl
hydroperoxide (200 µL, 5.5 M in nonane, 1.10 mmol) in CHCl3 (10
mL) was stirred at 20 °C until diol 5 has been
completely consumed (˜ 6 h). Afterwards, the reaction mixture
was concentrated under reduced pressure (40 °C/250
mbar) and the crude product was purified by filtration through a
short pad Al2O3(Et2O) to afford
an oil which was subjected to a Kugelrohr-distillation (130 °C/20
mbar). Yield: 113 mg (0.058 mmol, 59%), 6c:6d = 27:73, colorless liquid.
MS (70 eV, EI), m/z (%):
242/240(6) [M+],
160(15) [M+ - HBr],
147(100) [M+ - CH2Br],
131(41) [C10H11
+], 129(23) [M+ - CH2Br - H2O],
117(16) [C9H9
+],
91(66) [C7H7
+],
77(10) [C6H5
+],
41(12) [C3H5
+].
C11H13BrO (241.1) calc. C 54.80 H 5.85 found
C 54.51 H 5.31. Separation of diastereomers 6c and 6d was achieved by column chromatography [SiO2,
petroleum ether/Et2O, 1:2 (v/v)]. (2S,3S,5S)-5-Bromomethyl-3-hydroxy-2-methyltetra-hydrofuran
(6c): Rf = 0.50 (petroleum
ether/Et2O, 1:2 (v/v); [α]D
25 = -7.3
(c = 0.8, CHCl3); 1H
NMR (250 MHz): δ = 1.30 (d, 3 H, 3
J = 6.4 Hz, 6-H), 1.83 (s, 1
H, OH), 1.88 (ddd, 1 H, 3
J = 1.3,
4.9 Hz, 2
J = 14.3
Hz, 4-H), 2.41 (ddd, 1 H, 3
J = 6.0, 8.9
Hz, 2
J = 14.3
Hz, 4-H), 3.50 (dd, 1 H, 3
J = 4.6
Hz, 2
J = 10.4
Hz, -H), 3.61 (dd, 1 H, 3
J = 5.3
Hz, 2
J = 10.4
Hz, -H), 3.86 (qd, 1 H, 3
J
d = 3.1
Hz, 3
J
q = 6.4
Hz, 2-H), 4.10-4.23 (m, 2 H, 3-H, 5-H); 13C
NMR (CDCl3, 63 MHz): δ = 13.9, 36.7, 39.8,
73.3, 76.4, 79.8. (2S,3S,5R)-5-Bromomethyl-3-hydroxy-2-methyltetrahydrofuran
(6d): Rf = 0.45 (petroleum
ether/ Et2O, 1:2 (v/v)); [α]D
25 = -21.8
(c = 1.0, CHCl3); 1H
NMR (250 MHz): δ = 1.26 (d, 3 H, 3
J = 6.4 Hz, 6-H), 1.69 (s, 1
H, OH), 1.88 (ddd, 1 H, 3
J = 4.7,
9.2 Hz, 2
J = 13.8
Hz, 4-H), 2.20 (ddd, 1 H, 3
J = 1.2,
6.7 Hz, 2
J = 13.8 Hz,
4-H), 3.456 (d, 1 H, 3
J = 5.7
Hz, -H), 3.458 (d, 1 H, 3
J = 5.0
Hz, -H), 4.12 (qd, 1 H, 3
J
d = 2.8
Hz, 3
J
q = 6.4
Hz, 2-H), 4.24 (mc, 1 H, 3-H) 4.41-4.53 (m,
1 H, 5-H); 13C NMR (CDCl3,
63 MHz): δ = 14.1, 36.5, 40.5, 74.2, 76.1, 79.0.Ee
values for trisubstituted tetrahydrofurans 6a-d were determined for their derived (R)-configured Mosher esters. Samples which contained
the enantiomers of 6a-d in excess were available from a previous
study:
Hartung J.Kneuer R. Eur J. Org. Chem. 2000, 1677 - 29
Dale JA.Dull DL.Mosher HS. J. Org. Chem. 1969, 34: 2543 - 30
Kirby AJ. In The Anomeric Effect and Related Stereoelectronic Effects at Oxygen Springer-Verlag; Berlin: 1983. - 32 An optical rotation of [α]D
25 ≥ 0° has
been reported for enantiopure (+)-epiallo-muscarine(1d):
De Amici M.De Micheli C.Moteni G.Pitrè D.Carrea G.Riva S.Spezia S.Zetta L. J. Org. Chem. 1991, 56: 67 ; this value was confirmed by us in an independent study using enantiopure 1d. The origin for the significant positive [α]D 25 for the enantioenriched sample which was prepared in the present study using the AD bromocycloetherification sequence is unclear
References
(Z)-1,4-Hexadiene(2) (Fluka) (E)-1,4-hexadiene(4) (Chemsampco) are commercially available and were used as recieved.
20R f values of hexenediols (SiO2, Et2O): 0.61 for (2S,3R)-5-hexene-2,3-diol(3), [19] 0.59 for (2S,3S)-5-hexene-2,3-diol(5), [19] 0.69 for (Z)-4-hexene-1,2-diol and for (E)-4-hexene-1,2-diol. Ee values of diols 3 and 5 were determined by GC on a β-Dex-325 column (Supelco).
25Hartung, J.; Greb, M.; pehar, K.; Köhler, F.; Kluge, M.; Csuk, R. in preparation.
31Analytical data (1H NMR and 13C NMR in D2O) obtained for alkaloids 1a-d matched with the values reported in the literature; [10-13] 1a: 40% ee; [α]D 25 = +6.0° (c = 1.0, EtOH); 1b: 40% ee; [α]D 25 = -13.1° (c = 1.9, EtOH); 1c: 90% ee; [α]D 25 = +19.8° (c = 0.9, EtOH); 1d: 90% ee; [α]D 25 = +14.6° (c = 2.2, EtOH). [32]