Abstract
Short enantioselective syntheses of naturally occurring muscarine
alkaloids 1a-d starting
from (Z)-1,4-hexadiene (2)
and its E-configured isomer 4 have been devised. Key transformations in
both sequences were (i) asymmetric dihydroxylation of 1,4-hexadienes 2 and 4 and (ii)
application of a novel diastereoselective bromoetherification of
(2S,3R)-5-hexene-2,3-diol
(3) (40% ee) and (2S,3S)-5-hexene-2,3-diol
(5) (90% ee) which was initiated
by a vanadium(V)-catalyzed oxidation of bromide using tert-butyl hydroperoxide as primary oxidant.
Key words
bromide - cyclization - muscarine alkaloids - oxidation - tetrahydrofuran - vanadium
References
1a
Wang P.-C.
Joullié MM. In
The Alkaloids
Vol.
23:
Brossi A.
Academic
Press;
New York:
1984.
p.327-380
1b
Lewis JR.
Nat. Prod. Rep.
1998,
15:
417
1c
Lewis JR.
Nat. Prod. Rep.
1998,
15:
371
2a
Eugster CH.
Waser PG.
Experientia
1954,
10:
298
2b
Eugster CH.
Naturwissenschaften
1968,
55:
305
3a
Bollinger H.
Eugster CH.
Helv.
Chim. Acta
1971,
54:
2704
3b
Eugster CH.
Helv. Chim. Acta
1956,
39:
1002
4
Kögl F.
Salemink CA.
Schouten H.
Jellinek F.
Recl. Trav. Chim. Pays Bas
1957,
76:
109
5
Nitta K.
Stadelmann RJ.
Eugster CH.
Helv. Chim. Acta
1977,
60:
1747
6a
Bollinger H.
Eugster CH.
Helv.
Chim. Acta
1971,
54:
1332
6b
Catalformo P.
Eugster CH.
Helv. Chim. Acta
1970,
53:
848
6c
List HP.
Müller H.
Arch.
Pharm. (Weinheim, Ger.)
1959,
292:
777
6d
Eugster CH.
Müller G.
Helv.
Chim. Acta
1959,
42:
1189
7
Waser PG.
Pharmacol.
Res.
1961,
13:
465
8
Wilkinson S.
Quart.
Rev. Chem. Soc.
1961,
15:
153
9
Eugster CH.
Schleusener E.
Helv. Chim. Acta
1969,
52:
708
10a
Kang KH.
Cha MY.
Pae NA.
Choi KI.
Cho YS.
Koh HY.
Chung BY.
Tetrahedron Lett.
2000,
41:
8137
10b
Takano S.
Iwabuchi Y.
Ogasawara K.
J.
Chem. Soc., Chem. Commun.
1989,
1371
10c
Mulzer J.
Angermann A.
Münch W.
Schlichthörl G.
Hentzschel A.
Liebigs Ann. Chem.
1987,
7
10d
Amouroux R.
Gerin B.
Chastrette M.
Tetrahedron
1985,
41:
5321
10e
Still WC.
Schneider JA.
J.
Org. Chem.
1980,
45:
3375
10f
Hardegger E.
Lohse F.
Helv. Chim. Acta
1957,
40:
244
11a
Norrild JC.
Pedersen C.
Synthesis
1997,
1128
11b
Popsavin V.
Beric O.
Csanádi J.
Popsavin M.
Miljkovic D.
J.
Serb. Chem. Soc.
1995,
60:
625
11c
Chmielewski M.
Guzik P.
Hintze B.
Daniewski WM.
J. Org. Chem.
1985,
50:
5360
11d
Fronza G.
Fuganti C.
Grasselli P.
Tetrahedron
Lett.
1978,
3941
11e
Corrodi H.
Hardegger E.
Kögl F.
Helv.
Chim. Acta
1957,
40:
2454
12a
Angle SR.
El-Said NA.
J. Am. Chem. Soc.
2002,
124:
3608
12b
Popsavin V.
Beric O.
Popsavin M.
Radic L.
Csanádi J.
Cirin-Novta V.
Tetrahedron
2000,
56:
5929
12c
Popsavin V.
Beric O.
Popsavin M.
Lajsic S.
Miljkovic D.
Carbohydr.
Lett.
1998,
3:
1
13
Popsavin V.
Beric O.
Popsavin M.
Csanádi J.
Miljkovic D.
Carbohydr.
Res.
1995,
269:
343
14
De Amici M.
Dallanoce C.
De Micheli C.
Grana E.
Barbieri A.
Ladinsky H.
Schiavi G.
Zonta F.
J. Med. Chem.
1992,
35:
1915 ; and references cited therein
15a From l-arabinose: Hardegger E.
Lohse F.
Helv. Chim. Acta
1957,
40:
2383
15b From l-rhamnose: Mantell SJ.
Fleet GWJ.
Brown D.
J.
Chem. Soc., Perkin Trans. 1
1992,
3023
15c From 2-deoxy-l-ribose: Pochet S.
Huynh-Dinh T.
J. Org. Chem.
1982,
47:
193
15d From d-mannose: Mubarak AM.
Brown DM.
J. Chem. Soc., Perkin Trans. 1
1982,
809
15e
Hardegger E.
Furter H.
Kiss J.
Helv. Chim.
Acta
1958,
41:
2401
15f From d-glucosamine: Cox HC.
Hardegger E.
Kögl F.
Liechti P.
Lohse F.
Salemink CA.
Helv.
Chim. Acta
1958,
41:
229
For examples:
16a
Knight DW.
Shaw D.
Fenton G.
Synlett
1994,
295
16b
Chan TH.
Li CJ.
Can.
J. Chem.
1992,
70:
2726
16c
Amouroux R.
Gerin B.
Chastrette M.
Tetrahedron
Lett.
1982,
23:
4341
17 (Z)-1,4-Hexadiene(2) (Fluka) (E)-1,4-hexadiene(4) (Chemsampco) are commercially available
and were used as recieved.
18a AD-mix-α®:
K2[OsO2(OH)4],
K2CO3, K3[Fe(CN)6],
1,4-bis(9-O-dihydroquinyl)phthalazine;
AD-mix-β®: K2[OsO2(OH)4],
K2CO3, K3[Fe(CN)6],
1,4-bis(9-O-dihydroquinidyl)phthalazine.
For a review on the AD reaction, see: Kolb HC.
VanNieuwenhze MS.
Sharpless KB.
Chem. Rev.
1994,
94:
2483
18b For enantioselective dihydroxylations
of polyenes see: Becker H.
Soler MA.
Sharpless KB.
Tetrahedron
1995,
51:
1345
19
Paquette LA.
Mitzel TM.
J. Org. Chem.
1996,
61:
8799
20
R
f values
of hexenediols (SiO2, Et2O): 0.61 for (2S,3R)-5-hexene-2,3-diol(3),
[19]
0.59
for (2S,3S)-5-hexene-2,3-diol(5),
[19]
0.69
for (Z)-4-hexene-1,2-diol and for (E)-4-hexene-1,2-diol. Ee values of diols 3 and 5 were determined by
GC on a β-Dex-325 column (Supelco).
21
Wang L.
Sharpless KB.
J. Am. Chem. Soc.
1992,
114:
7568
22
Xu D.
Crispino GA.
Sharpless KB.
J.
Am. Chem. Soc.
1992,
114:
7570
23
Hale KJ.
Lennon JA.
Manaviazar S.
Javaid MH.
Hobbs CJ.
Tetrahedron Lett.
1995,
36:
1359
24
Sharpless KB.
Amberg W.
Bennani YL.
Crispino GA.
Hartung J.
Jeong K.-S.
Kwong H.-L.
Morikawa K.
Whang Z.-M.
Xu D.
Zhang X.-L.
J.
Org. Chem.
1992,
57:
2768
25 Hartung, J.; Greb, M.; pehar, K.;
Köhler, F.; Kluge, M.; Csuk, R. in preparation.
26
Mimoun H.
Mignard M.
Brechot P.
Saussine L.
J. Am. Chem. Soc.
1986,
108:
3711
27
Hartung J.
Schmidt P.
Synlett
2000,
367
28 Preparation of tetrahydrofurans 6a and 6b (from 3) and 6c and 6d (from 5) was
performed according to the following general procedure: A solution
of (2S,3S)-hexene-2,3-diol(5) (116 mg, 1.00 mmol), [VOL(EtO)(EtOH)] (L = N-(2-hydroxyphenyl)salicylideneimine
dianion) (36.9 mg, 0.10 mmol),25-27 pyridinium
hydrobromide (176 mg, 1.10 mmol) and tert-butyl
hydroperoxide (200 µL, 5.5 M in nonane, 1.10 mmol) in CHCl3 (10
mL) was stirred at 20 °C until diol 5 has been
completely consumed (˜ 6 h). Afterwards, the reaction mixture
was concentrated under reduced pressure (40 °C/250
mbar) and the crude product was purified by filtration through a
short pad Al2O3(Et2O) to afford
an oil which was subjected to a Kugelrohr-distillation (130 °C/20
mbar). Yield: 113 mg (0.058 mmol, 59%), 6c:6d = 27:73, colorless liquid.
MS (70 eV, EI), m/z (%):
242/240(6) [M+],
160(15) [M+ - HBr],
147(100) [M+ - CH2Br],
131(41) [C10H11
+], 129(23) [M+ - CH2Br - H2O],
117(16) [C9H9
+],
91(66) [C7H7
+],
77(10) [C6H5
+],
41(12) [C3H5
+].
C11H13BrO (241.1) calc. C 54.80 H 5.85 found
C 54.51 H 5.31. Separation of diastereomers 6c and 6d was achieved by column chromatography [SiO2,
petroleum ether/Et2O, 1:2 (v/v)]. (2S,3S,5S)-5-Bromomethyl-3-hydroxy-2-methyltetra-hydrofuran
(6c): Rf = 0.50 (petroleum
ether/Et2O, 1:2 (v/v); [α]D
25 = -7.3
(c = 0.8, CHCl3); 1H
NMR (250 MHz): δ = 1.30 (d, 3 H, 3
J = 6.4 Hz, 6-H), 1.83 (s, 1
H, OH), 1.88 (ddd, 1 H, 3
J = 1.3,
4.9 Hz, 2
J = 14.3
Hz, 4-H), 2.41 (ddd, 1 H, 3
J = 6.0, 8.9
Hz, 2
J = 14.3
Hz, 4-H), 3.50 (dd, 1 H, 3
J = 4.6
Hz, 2
J = 10.4
Hz, -H), 3.61 (dd, 1 H, 3
J = 5.3
Hz, 2
J = 10.4
Hz, -H), 3.86 (qd, 1 H, 3
J
d = 3.1
Hz, 3
J
q = 6.4
Hz, 2-H), 4.10-4.23 (m, 2 H, 3-H, 5-H); 13C
NMR (CDCl3, 63 MHz): δ = 13.9, 36.7, 39.8,
73.3, 76.4, 79.8. (2S,3S,5R)-5-Bromomethyl-3-hydroxy-2-methyltetrahydrofuran
(6d): Rf = 0.45 (petroleum
ether/ Et2O, 1:2 (v/v)); [α]D
25 = -21.8
(c = 1.0, CHCl3); 1H
NMR (250 MHz): δ = 1.26 (d, 3 H, 3
J = 6.4 Hz, 6-H), 1.69 (s, 1
H, OH), 1.88 (ddd, 1 H, 3
J = 4.7,
9.2 Hz, 2
J = 13.8
Hz, 4-H), 2.20 (ddd, 1 H, 3
J = 1.2,
6.7 Hz, 2
J = 13.8 Hz,
4-H), 3.456 (d, 1 H, 3
J = 5.7
Hz, -H), 3.458 (d, 1 H, 3
J = 5.0
Hz, -H), 4.12 (qd, 1 H, 3
J
d = 2.8
Hz, 3
J
q = 6.4
Hz, 2-H), 4.24 (mc, 1 H, 3-H) 4.41-4.53 (m,
1 H, 5-H); 13C NMR (CDCl3,
63 MHz): δ = 14.1, 36.5, 40.5, 74.2, 76.1, 79.0.Ee
values for trisubstituted tetrahydrofurans 6a-d were determined for their derived (R)-configured Mosher esters. Samples which contained
the enantiomers of 6a-d in excess were available from a previous
study: Hartung J.
Kneuer R.
Eur
J. Org. Chem.
2000,
1677
29
Dale JA.
Dull DL.
Mosher HS.
J.
Org. Chem.
1969,
34:
2543
30
Kirby AJ. In
The Anomeric Effect and Related Stereoelectronic
Effects at Oxygen
Springer-Verlag;
Berlin:
1983.
31 Analytical data (1H
NMR and 13C NMR in D2O)
obtained for alkaloids 1a-d matched with the values reported in the literature;
[10-13]
1a: 40% ee; [α]D
25 = +6.0° (c = 1.0, EtOH); 1b:
40% ee; [α]D
25 = -13.1° (c = 1.9, EtOH); 1c:
90% ee; [α]D
25 = +19.8° (c = 0.9, EtOH); 1d:
90% ee; [α]D
25 = +14.6° (c = 2.2, EtOH).
[32]
32 An optical rotation of [α]D
25 ≥ 0° has
been reported for enantiopure (+)-epiallo-muscarine(1d): De Amici M.
De Micheli C.
Moteni G.
Pitrè D.
Carrea G.
Riva S.
Spezia S.
Zetta L.
J. Org. Chem.
1991,
56:
67 ; this value was confirmed by us in an independent
study using enantiopure 1d. The origin
for the significant positive [α]D
25 for
the enantioenriched sample which was prepared in the present study
using the AD bromocycloetherification sequence is unclear